Remove 2009 Remove Big Data Remove Hadoop
article thumbnail

Brief History of Data Engineering

Jesse Anderson

Doug Cutting took those papers and created Apache Hadoop in 2005. They were the first companies to commercialize open source big data technologies and pushed the marketing and commercialization of Hadoop. Hadoop was hard to program, and Apache Hive came along in 2010 to add SQL. They eventually merged in 2012.

article thumbnail

Recap of Hadoop News for April

ProjectPro

News on Hadoop-April 2016 Cutting says Hadoop is not at its peak but at its starting stages. Datanami.com At his keynote address in San Jose, Strata+Hadoop World 2016, Doug Cutting said that Hadoop is not at its peak and not going to phase out. Source: [link] ) Dr. Elephant will now solve your Hadoop flow problems.

Hadoop 52
article thumbnail

Apache Spark vs MapReduce: A Detailed Comparison

Knowledge Hut

Why We Need Big Data Frameworks Big data is primarily defined by the volume of a data set. Big data sets are generally huge – measuring tens of terabytes – and sometimes crossing the threshold of petabytes. It is surprising to know how much data is generated every minute.

Hadoop 96
article thumbnail

Big Data Timeline- Series of Big Data Evolution

ProjectPro

"Big data is at the foundation of all of the megatrends that are happening today, from social to mobile to the cloud to gaming."- ”- Atul Butte, Stanford With the big data hype all around, it is the fuel of the 21 st century that is driving all that we do. .”- said Chris Lynch, the ex CEO of Vertica.

article thumbnail

Apache Hadoop turns 10: The Rise and Glory of Hadoop

ProjectPro

It is difficult to believe that the first Hadoop cluster was put into production at Yahoo, 10 years ago, on January 28 th , 2006. Ten years ago nobody was aware that an open source technology, like Apache Hadoop will fire a revolution in the world of big data. Happy Birthday Hadoop With more than 1.7

Hadoop 40
article thumbnail

What is Hadoop 2.0 High Availability?

ProjectPro

was intensive and played a significant role in processing large data sets, however it was not an ideal choice for interactive analysis and was constrained for machine learning, graph and memory intensive data analysis algorithms. In one of our previous articles we had discussed about Hadoop 2.0

Hadoop 40
article thumbnail

5 Apache Spark Best Practices

Data Science Blog: Data Engineering

Already familiar with the term big data, right? Despite the fact that we would all discuss Big Data, it takes a very long time before you confront it in your career. Apache Spark is a Big Data tool that aims to handle large datasets in a parallel and distributed manner. Begin with a small sample of the data.

Hadoop 52