Remove 2013 Remove Data Analytics Remove Hadoop
article thumbnail

How LinkedIn uses Hadoop to leverage Big Data Analytics?

ProjectPro

Table of Contents LinkedIn Hadoop and Big Data Analytics The Big Data Ecosystem at LinkedIn LinkedIn Big Data Products 1) People You May Know 2) Skill Endorsements 3) Jobs You May Be Interested In 4) News Feed Updates Wondering how LinkedIn keeps up with your job preferences, your connection suggestions and stories you prefer to read?

Hadoop 40
article thumbnail

Hadoop- The Next Big Thing in India

ProjectPro

Big Data Hadoop skills are most sought after as there is no open source framework that can deal with petabytes of data generated by organizations the way hadoop does. 2014 was the year people realized the capability of transforming big data to valuable information and the power of Hadoop in impeding it.

Hadoop 52
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

5 Reasons why Java professionals should learn Hadoop

ProjectPro

According to the Industry Analytics Report, hadoop professionals get 250% salary hike. Java developers have increased probability to get a strong salary hike when they shift to big data job roles. If you are a java developer, you might have already heard about the excitement revolving around big data hadoop.

Java 52
article thumbnail

What are the Pre-requisites to learn Hadoop?

ProjectPro

Hadoop has now been around for quite some time. But this question has always been present as to whether it is beneficial to learn Hadoop, the career prospects in this field and what are the pre-requisites to learn Hadoop? By 2018, the Big Data market will be about $46.34 between 2013 - 2020. billion dollars worth.

Hadoop 52
article thumbnail

5 Reasons Why ETL Professionals Should Learn Hadoop

ProjectPro

Hadoop’s significance in data warehousing is progressing rapidly as a transitory platform for extract, transform, and load (ETL) processing. Mention about ETL and eyes glaze over Hadoop as a logical platform for data preparation and transformation as it allows them to manage huge volume, variety, and velocity of data flawlessly.

Hadoop 52
article thumbnail

Hadoop 2.0 (YARN) Framework - The Gateway to Easier Programming for Hadoop Users

ProjectPro

With a rapid pace in evolution of Big Data, its processing frameworks also seem to be evolving in a full swing mode. Hadoop (Hadoop 1.0) has progressed from a more restricted processing model of batch oriented MapReduce jobs to developing specialized and interactive processing models (Hadoop 2.0). to Hadoop 2.0.

Hadoop 40
article thumbnail

5 Apache Spark Best Practices

Data Science Blog: Data Engineering

Introduction Spark’s aim is to create a new framework that was optimized for quick iterative processing, such as machine learning and interactive data analysis while retaining Hadoop MapReduce’s scalability and fault-tolerant. This could handle packet and real-time data processing and predictive analysis workloads.

Hadoop 52