article thumbnail

Complete Guide to Data Transformation: Basics to Advanced

Ascend.io

Intermediate Data Transformation Techniques Data engineers often find themselves in the thick of transforming data into formats that are not only usable but also insightful. Intermediate data transformation techniques are where the magic truly begins.

article thumbnail

How Snowflake Enhanced GTM Efficiency with Data Sharing and Outreach Customer Engagement Data

Snowflake

For a more in-depth exploration, plus advice from Snowflake’s Travis Henry, Director of Sales Development Ops and Enablement, and Ryan Huang, Senior Marketing Data Analyst, register for our Snowflake on Snowflake webinar on boosting market efficiency by leveraging data from Outreach.

BI 104
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Druid Deprecation and ClickHouse Adoption at Lyft

Lyft Engineering

Druid at Lyft Apache Druid is an in-memory, columnar, distributed, open-source data store designed for sub-second queries on real-time and historical data. Druid enables low latency (real-time) data ingestion, flexible data exploration and fast data aggregation resulting in sub-second query latencies.

Kafka 106
article thumbnail

Machine Learning with Python, Jupyter, KSQL and TensorFlow

Confluent

It allows real-time data ingestion, processing, model deployment and monitoring in a reliable and scalable way. This blog post focuses on how the Kafka ecosystem can help solve the impedance mismatch between data scientists, data engineers and production engineers.

article thumbnail

Using other CDP services with Cloudera Operational Database

Cloudera

In the following sections, we see how the Cloudera Operational Database is integrated with other services within CDP that provide unified governance and security, data ingest capabilities, and expand compatibility with Cloudera Runtime components to cater to your specific use cases. . Integrated across the Enterprise Data Lifecycle .

article thumbnail

Striim Deemed ‘Leader’ and ‘Fast Mover’ by GigaOm Radar Report for Streaming Data Platforms

Striim

Why Striim Stands Out As detailed in the GigaOm Radar Report, Striim’s unified data integration and streaming service platform excels due to its distributed, in-memory architecture that extensively utilizes SQL for essential operations such as transforming, filtering, enriching, and aggregating data.

article thumbnail

Introducing Vector Search on Rockset: How to run semantic search with OpenAI and Rockset

Rockset

Under the hood, Rockset utilizes its Converged Index technology, which is optimized for metadata filtering, vector search and keyword search, supporting sub-second search, aggregations and joins at scale. Feature Generation: Transform and aggregate data during the ingest process to generate complex features and reduce data storage volumes.