Remove Aggregated Data Remove Data Ingestion Remove Kafka
article thumbnail

Machine Learning with Python, Jupyter, KSQL and TensorFlow

Confluent

The blog posts How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka and Using Apache Kafka to Drive Cutting-Edge Machine Learning describe the benefits of leveraging the Apache Kafka ® ecosystem as a central, scalable and mission-critical nervous system. For now, we’ll focus on Kafka.

article thumbnail

Druid Deprecation and ClickHouse Adoption at Lyft

Lyft Engineering

Druid at Lyft Apache Druid is an in-memory, columnar, distributed, open-source data store designed for sub-second queries on real-time and historical data. Druid enables low latency (real-time) data ingestion, flexible data exploration and fast data aggregation resulting in sub-second query latencies.

Kafka 105
article thumbnail

Using other CDP services with Cloudera Operational Database

Cloudera

In the following sections, we see how the Cloudera Operational Database is integrated with other services within CDP that provide unified governance and security, data ingest capabilities, and expand compatibility with Cloudera Runtime components to cater to your specific use cases. . Integrated across the Enterprise Data Lifecycle .

article thumbnail

Striim Deemed ‘Leader’ and ‘Fast Mover’ by GigaOm Radar Report for Streaming Data Platforms

Striim

Why Striim Stands Out As detailed in the GigaOm Radar Report, Striim’s unified data integration and streaming service platform excels due to its distributed, in-memory architecture that extensively utilizes SQL for essential operations such as transforming, filtering, enriching, and aggregating data.

article thumbnail

Introducing Vector Search on Rockset: How to run semantic search with OpenAI and Rockset

Rockset

Under the hood, Rockset utilizes its Converged Index technology, which is optimized for metadata filtering, vector search and keyword search, supporting sub-second search, aggregations and joins at scale. Feature Generation: Transform and aggregate data during the ingest process to generate complex features and reduce data storage volumes.

article thumbnail

How Rockset Enables SQL-Based Rollups for Streaming Data

Rockset

Apache Kafka has made acquiring real-time data more mainstream, but only a small sliver are turning batch analytics, run nightly, into real-time analytical dashboards with alerts and automatic anomaly detection. But until this release, all these data sources involved indexing the incoming raw data on a record by record basis.

SQL 52
article thumbnail

Comparing ClickHouse vs Rockset for Event and CDC Streams

Rockset

Streaming data feeds many real-time analytics applications, from logistics tracking to real-time personalization. Event streams, such as clickstreams, IoT data and other time series data, are common sources of data into these apps. The broad adoption of Apache Kafka has helped make these event streams more accessible.

MySQL 52