This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data storage has been evolving, from databases to data warehouses and expansive datalakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.
What if you could streamline your efforts while still building an architecture that best fits your business and technology needs? Snowflake is committed to doing just that by continually adding features to help our customers simplify how they architect their data infrastructure. Here’s a closer look.
In this episode David Yaffe and Johnny Graettinger share the story behind the business and technology and how you can start using it today to build a real-time datalake without all of the headache. What is the impact of continuous data flows on dags/orchestration of transforms? RudderStack also supports real-time use cases.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data.
The goal of this post is to understand how data integrity best practices have been embraced time and time again, no matter the technology underpinning. In the beginning, there was a data warehouse The data warehouse (DW) was an approach to dataarchitecture and structured data management that really hit its stride in the early 1990s.
A comparative overview of data warehouses, datalakes, and data marts to help you make informed decisions on data storage solutions for your dataarchitecture.
The world we live in today presents larger datasets, more complex data, and diverse needs, all of which call for efficient, scalable data systems. Open Table Format (OTF) architecture now provides a solution for efficient data storage, management, and processing while ensuring compatibility across different platforms.
Summary A data lakehouse is intended to combine the benefits of datalakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Datalakes are notoriously complex. To start, can you share your definition of what constitutes a "Data Lakehouse"?
In this episode Tobias Macey shares his thoughts on the challenges that he is facing as he prepares to build the next set of architectural layers for his data platform to enable a larger audience to start accessing the data being managed by his team. Datalakes are notoriously complex. With Materialize, you can!
Summary Datalakearchitectures have largely been biased toward batch processing workflows due to the volume of data that they are designed for. With more real-time requirements and the increasing use of streaming data there has been a struggle to merge fast, incremental updates with large, historical analysis.
Over the years, the technology landscape for data management has given rise to various architecture patterns, each thoughtfully designed to cater to specific use cases and requirements. Each of these architectures has its own unique strengths and tradeoffs.
Get all of the details and try the new product today at dataengineeringpodcast.com/rudderstack You shouldn't have to throw away the database to build with fast-changing data. Datalakes are notoriously complex. Materialize]([link] You shouldn't have to throw away the database to build with fast-changing data.
With this 3rd platform generation, you have more real time data analytics and a cost reduction because it is easier to manage this infrastructure in the cloud thanks to managed services. We are Data Teams versus we have to patch the server with the latest version and do the tests. The number of subjects to automatize is not short.
More than 50% of data leaders recently surveyed by BCG said the complexity of their dataarchitecture is a significant pain point in their enterprise. As a result,” says BCG, “many companies find themselves at a tipping point, at risk of drowning in a deluge of data, overburdened with complexity and costs.”
Summary Datalakes offer a great deal of flexibility and the potential for reduced cost for your analytics, but they also introduce a great deal of complexity. In order to bring the DBA into the new era of data management the team at Upsolver added a SQL interface to their datalake platform.
Summary One of the perennial challenges posed by datalakes is how to keep them up to date as new data is collected. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Summary Data lakehouse architectures have been gaining significant adoption. To accelerate adoption in the enterprise Microsoft has created the Fabric platform, based on their OneLake architecture. Datalakes in various forms have been gaining significant popularity as a unified interface to an organization's analytics.
It’s not enough for businesses to implement and maintain a dataarchitecture. The unpredictability of market shifts and the evolving use of new technologies means businesses need more data they can trust than ever to stay agile and make the right decisions.
Summary Designing a data platform is a complex and iterative undertaking which requires accounting for many conflicting needs. Designing a platform that relies on a datalake as its central architectural tenet adds additional layers of difficulty. Can you describe your current platform architecture?
Data Access API over DataLake Tables Without the Complexity Build a robust GraphQL API service on top of your S3 datalake files with DuckDB and Go Photo by Joshua Sortino on Unsplash 1. This data might be primarily used for internal reporting, but might also be valuable for other services in our organization.
Summary The Presto project has become the de facto option for building scalable open source analytics in SQL for the datalake. Another area that has been seeing a lot of activity is datalakes and projects to make them more manageable and feature complete (e.g. Hudi, Delta Lake, Iceberg, Nessie, LakeFS, etc.).
In this episode Yingjun Wu explains how it is architected to power analytical workflows on continuous data flows, and the challenges of making it responsive and scalable. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Snowflake is now making it even easier for customers to bring the platform’s usability, performance, governance and many workloads to more data with Iceberg tables (now generally available), unlocking full storage interoperability. Iceberg tables provide compute engine interoperability over a single copy of data.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
The promise of a modern data lakehouse architecture. Imagine having self-service access to all business data, anywhere it may be, and being able to explore it all at once. Imagine quickly answering burning business questions nearly instantly, without waiting for data to be found, shared, and ingested.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
As organizations continue to navigate this AI-driven world, we set out to understand the strategies and emerging dataarchitectures that are defining the future. Check out the full survey report for additional insights into the future of AI and dataarchitecture.
Summary Databases and analytics architectures have gone through several generational shifts. A substantial amount of the data that is being managed in these systems is related to customers and their interactions with an organization. How has that changed the architectural approach to CDPs? Want to see Starburst in action?
Datalakes are notoriously complex. How much of the complexity is due to the nature of streaming data vs. the architectural realities of Flink? How has the lack of visibility into the flow of data in Flink impacted the ways that teams think about where/when/how to apply it? Datalakes are notoriously complex.
Summary Data lakehouse architectures are gaining popularity due to the flexibility and cost effectiveness that they offer. The link that bridges the gap between datalake and warehouse capabilities is the catalog. Datalakes are notoriously complex. Can you describe the architecture of Nessie?
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform. Can you describe what role Trino and Iceberg play in Stripe's dataarchitecture?
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality data workflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Data has continued to grow both in scale and in importance through this period, and today telecommunications companies are increasingly seeing dataarchitecture as an independent organizational challenge, not merely an item on an IT checklist. Previously, there were three types of data structures in telco: .
Architecture Difference The first difference is the Data Model. Kafka is designed to be a black box to collect all kinds of data, so Kafka doesn't have built-in schema and schema enforcement; this is the biggest problem when integrating with schematized systems like Lakehouse. The fourth difference is the Lakehouse Architecture.
By making the software be the owner of the data that it generates, we have to go through the trouble of extracting the information to then be used elsewhere. The team at Cinchy are working to bring about a new paradigm of software architecture that puts the data as the central element. What is it used for? How does that work?
In this episode Andrew Jefferson explains the complexities of building a robust system for data sharing, the techno-social considerations, and how the Bobsled platform that he is building aims to simplify the process. Want to see Starburst in action?
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content