article thumbnail

Streaming Big Data Files from Cloud Storage

Towards Data Science

This continues a series of posts on the topic of efficient ingestion of data from the cloud (e.g., Before we get started, let’s be clear…when using cloud storage, it is usually not recommended to work with files that are particularly large. during runtime to support varying data ingestion patterns.

article thumbnail

Stream Rows and Kafka Topics Directly into Snowflake with Snowpipe Streaming

Snowflake

This solution is both scalable and reliable, as we have been able to effortlessly ingest upwards of 1GB/s throughput.” Rather than streaming data from source into cloud object stores then copying it to Snowflake, data is ingested directly into a Snowflake table to reduce architectural complexity and reduce end-to-end latency.

Kafka 137
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

This foundational layer is a repository for various data types, from transaction logs and sensor data to social media feeds and system logs. By storing data in its native state in cloud storage solutions such as AWS S3, Google Cloud Storage, or Azure ADLS, the Bronze layer preserves the full fidelity of the data.

article thumbnail

Introducing Compute-Compute Separation for Real-Time Analytics

Rockset

When you deconstruct the core database architecture, deep in the heart of it you will find a single component that is performing two distinct competing functions: real-time data ingestion and query serving. When data ingestion has a flash flood moment, your queries will slow down or time out making your application flaky.

article thumbnail

8 Data Ingestion Tools (Quick Reference Guide)

Monte Carlo

At the heart of every data-driven decision is a deceptively simple question: How do you get the right data to the right place at the right time? The growing field of data ingestion tools offers a range of answers, each with implications to ponder. Fivetran Image courtesy of Fivetran.

article thumbnail

Why Open Table Format Architecture is Essential for Modern Data Systems

phData: Data Engineering

This is particularly beneficial in complex analytical queries, where processing smaller, targeted segments of data results in quicker and more efficient query execution. Additionally, the optimized query execution and data pruning features reduce the compute cost associated with querying large datasets.

article thumbnail

Discover And De-Clutter Your Unstructured Data With Aparavi

Data Engineering Podcast

report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. In fact, while only 3.5% That’s where our friends at Ascend.io