article thumbnail

Setting up Data Lake on GCP using Cloud Storage and BigQuery

Analytics Vidhya

The need for a data lake arises from the growing volume, variety, and velocity of data companies need to manage and analyze.

article thumbnail

4 Key Patterns to Load Data Into A Data Warehouse

Start Data Engineering

Batch Data Pipelines 1.1 Process => Data Warehouse 1.2 Process => Cloud Storage => Data Warehouse 2. Near Real-Time Data pipelines 2.1 Data Stream => Consumer => Data Warehouse 2.2

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

How Apache Iceberg Is Changing the Face of Data Lakes

Snowflake

Data storage has been evolving, from databases to data warehouses and expansive data lakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.

article thumbnail

Cloudera Data Warehouse outperforms Azure HDInsight in TPC-DS benchmark

Cloudera

Performance is one of the key, if not the most important deciding criterion, in choosing a Cloud Data Warehouse service. In today’s fast changing world, enterprises have to make data driven decisions quickly and for that they rely heavily on their data warehouse service. . benchmark.

article thumbnail

Creating a Data Pipeline with Spark, Google Cloud Storage and Big Query

Towards Data Science

And that’s the target of today’s post — We’ll be developing a data pipeline using Apache Spark, Google Cloud Storage, and Google Big Query (using the free tier) not sponsored. The tools Spark is an all-purpose distributed memory-based data processing framework geared towards processing extremely large amounts of data.

article thumbnail

Using Trino And Iceberg As The Foundation Of Your Data Lakehouse

Data Engineering Podcast

Summary A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Multiple open source projects and vendors have been working together to make this vision a reality.

Data Lake 262
article thumbnail

Enabling Multi-User Fine-Grained Access Control for Cloud Storage in CDP

Cloudera

Shared Data Experience ( SDX ) on Cloudera Data Platform ( CDP ) enables centralized data access control and audit for workloads in the Enterprise Data Cloud. The public cloud (CDP-PC) editions default to using cloud storage (S3 for AWS, ADLS-gen2 for Azure).