Remove Cloud Storage Remove Metadata Remove Structured Data
article thumbnail

How Apache Iceberg Is Changing the Face of Data Lakes

Snowflake

Data storage has been evolving, from databases to data warehouses and expansive data lakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.

article thumbnail

Migrate Hive data from CDH to CDP public cloud

Cloudera

Using easy-to-define policies, Replication Manager solves one of the biggest barriers for the customers in their cloud adoption journey by allowing them to move both tables/structured data and files/unstructured data to the CDP cloud of their choice easily. Understanding Sentry permissions on CDH cluster.

Cloud 73
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Definitive Guide to Using BigQuery Efficiently

Towards Data Science

BigQuery separates storage and compute with Google’s Jupiter network in-between to utilize 1 Petabit/sec of total bisection bandwidth. The storage system is using Capacitor, a proprietary columnar storage format by Google for semi-structured data and the file system underneath is Colossus, the distributed file system by Google.

Bytes 97
article thumbnail

Implementing the Netflix Media Database

Netflix Tech

A fundamental requirement for any lasting data system is that it should scale along with the growth of the business applications it wishes to serve. NMDB is built to be a highly scalable, multi-tenant, media metadata system that can serve a high volume of write/read throughput as well as support near real-time queries.

Media 97
article thumbnail

Unlocking Effective Data Governance with Unity Catalog – Data Bricks

RandomTrees

The Unity Catalog is Databricks governance solution which integrates with Databricks workspaces and provides a centralized platform for managing metadata, data access, and security. Improved Data Discovery The tagging and documentation features in Unity Catalog facilitate better data discovery.

article thumbnail

Accelerate your Data Migration to Snowflake

RandomTrees

A combination of structured and semi structured data can be used for analysis and loaded into the cloud database without the need of transforming into a fixed relational scheme first. This stage handles all the aspects of data storage like organization, file size, structure, compression, metadata, statistics.

article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

Traditionally, after being stored in a data lake, raw data was then often moved to various destinations like a data warehouse for further processing, analysis, and consumption. Databricks Data Catalog and AWS Lake Formation are examples in this vein. AWS is one of the most popular data lake vendors.