Remove Data Architecture Remove Data Lake Remove Structured Data
article thumbnail

Announcing New Innovations for Data Warehouse, Data Lake, and Data Lakehouse in the Data Cloud 

Snowflake

Over the years, the technology landscape for data management has given rise to various architecture patterns, each thoughtfully designed to cater to specific use cases and requirements. Each of these architectures has its own unique strengths and tradeoffs.

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

In 2010, a transformative concept took root in the realm of data storage and analytics — a data lake. The term was coined by James Dixon , Back-End Java, Data, and Business Intelligence Engineer, and it started a new era in how organizations could store, manage, and analyze their data. What is a data lake?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

5 Reasons Data Discovery Platforms Are Best For Data Lakes

Monte Carlo

Over the past few years, data lakes have emerged as a must-have for the modern data stack. But while the technologies powering our access and analysis of data have matured, the mechanics behind understanding this data in a distributed environment have lagged behind. Data discovery tools and platforms can help.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Data pipelines are the backbone of your business’s data architecture. Implementing a robust and scalable pipeline ensures you can effectively manage, analyze, and organize your growing data. Understanding the essential components of data pipelines is crucial for designing efficient and effective data architectures.

article thumbnail

A Prequel to Data Mesh

Towards Data Science

When I heard the words ‘decentralised data architecture’, I was left utterly confused at first! In my then limited experience as a Data Engineer, I had only come across centralised data architectures and they seemed to be working very well. New data formats emerged — JSON, Avro, Parquet, XML etc.

article thumbnail

Azure Synapse vs Databricks: 2023 Comparison Guide

Knowledge Hut

Key connectivity features include: Data Ingestion: Databricks supports data ingestion from a variety of sources, including data lakes, databases, streaming platforms, and cloud storage. This flexibility allows organizations to ingest data from virtually anywhere.

article thumbnail

Hands-On Introduction to Delta Lake with (py)Spark

Towards Data Science

In this context, data management in an organization is a key point for the success of its projects involving data. One of the main aspects of correct data management is the definition of a data architecture. The data became useless. The Lakehouse architecture was one of them.