Remove Data Architecture Remove Data Warehouse Remove Structured Data
article thumbnail

Data Integrity for AI: What’s Old is New Again

Precisely

The goal of this post is to understand how data integrity best practices have been embraced time and time again, no matter the technology underpinning. In the beginning, there was a data warehouse The data warehouse (DW) was an approach to data architecture and structured data management that really hit its stride in the early 1990s.

article thumbnail

How Apache Iceberg Is Changing the Face of Data Lakes

Snowflake

Data storage has been evolving, from databases to data warehouses and expansive data lakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Announcing New Innovations for Data Warehouse, Data Lake, and Data Lakehouse in the Data Cloud 

Snowflake

Over the years, the technology landscape for data management has given rise to various architecture patterns, each thoughtfully designed to cater to specific use cases and requirements. Each of these architectures has its own unique strengths and tradeoffs. The schema of semi-structured data tends to evolve over time.

Data Lake 115
article thumbnail

SnowflakeDB: The Data Warehouse Built For The Cloud

Data Engineering Podcast

Summary Data warehouses have gone through many transformations, from standard relational databases on powerful hardware, to column oriented storage engines, to the current generation of cloud-native analytical engines. If you are evaluating your options for building or migrating a data platform, then this is definitely worth a listen.

article thumbnail

What is an AI Data Engineer? 4 Important Skills, Responsibilities, & Tools

Monte Carlo

Key Differences Between AI Data Engineers and Traditional Data Engineers While traditional data engineers and AI data engineers have similar responsibilities, they ultimately differ in where they focus their efforts. Data Storage Solutions As we all know, data can be stored in a variety of ways.

article thumbnail

A Prequel to Data Mesh

Towards Data Science

When I heard the words ‘decentralised data architecture’, I was left utterly confused at first! In my then limited experience as a Data Engineer, I had only come across centralised data architectures and they seemed to be working very well. Result: Data warehouse was born. So what was missing?

article thumbnail

How HomeToGo Is Building a Robust Clickstream Data Architecture with Snowflake, Snowplow and dbt

Snowflake

It also came with other advantages such as independence of cloud infrastructure providers, data recovery features such as Time Travel , and zero copy cloning which made setting up several environments — such as dev, stage or production — way more efficient.