article thumbnail

Building and Scaling Data Lineage at Netflix to Improve Data Infrastructure Reliability, and…

Netflix Tech

Our data ingestion approach, in a nutshell, is classified broadly into two buckets?—?push In this model, we scan system logs and metadata generated by various compute engines to collect corresponding lineage data. push or pull. Today, we are operating using a pull-heavy model.

article thumbnail

A Data Mesh Implementation: Expediting Value Extraction from ERP/CRM Systems

Towards Data Science

Data teams can create a job there to extract raw data from operational sources using JDBC connections or APIs. To avoid wasting computational work, and whenever possible, only the updated raw data since the last extraction should be incrementally added to the data product.

Systems 98
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

8 Data Quality Monitoring Techniques & Metrics to Watch

Databand.ai

Finally, you should continuously monitor and update your data quality rules to ensure they remain relevant and effective in maintaining data quality. Data Cleansing Data cleansing, also known as data scrubbing or data cleaning, is the process of identifying and correcting errors, inconsistencies, and inaccuracies in your data.

article thumbnail

A Guide to Seamless Data Fabric Implementation

Striim

Data Fabric is a comprehensive data management approach that goes beyond traditional methods , offering a framework for seamless integration across diverse sources. By upholding data quality, organizations can trust the information they rely on for decision-making, fostering a data-driven culture built on dependable insights.

article thumbnail

Data Pipeline Observability: A Model For Data Engineers

Databand.ai

Data pipelines often involve a series of stages where data is collected, transformed, and stored. This might include processes like data extraction from different sources, data cleansing, data transformation (like aggregation), and loading the data into a database or a data warehouse.

article thumbnail

Building a Winning Data Quality Strategy: Step by Step

Databand.ai

This includes defining roles and responsibilities related to managing datasets and setting guidelines for metadata management. Data profiling: Regularly analyze dataset content to identify inconsistencies or errors. Data cleansing: Implement corrective measures to address identified issues and improve dataset accuracy levels.

article thumbnail

Accelerate your Data Migration to Snowflake

RandomTrees

The architecture is three layered: Database Storage: Snowflake has a mechanism to reorganize the data into its internal optimized, compressed and columnar format and stores this optimized data in cloud storage. This stage handles all the aspects of data storage like organization, file size, structure, compression, metadata, statistics.