Remove Data Cleanse Remove Metadata Remove Raw Data
article thumbnail

A Data Mesh Implementation: Expediting Value Extraction from ERP/CRM Systems

Towards Data Science

As you do not want to start your development with uncertainty, you decide to go for the operational raw data directly. Accessing Operational Data I used to connect to views in transactional databases or APIs offered by operational systems to request the raw data. Does it sound familiar?

Systems 98
article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

The term was coined by James Dixon , Back-End Java, Data, and Business Intelligence Engineer, and it started a new era in how organizations could store, manage, and analyze their data. This article explains what a data lake is, its architecture, and diverse use cases. Watch our video explaining how data engineering works.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

DataOps Architecture: 5 Key Components and How to Get Started

Databand.ai

In a DataOps architecture, it’s crucial to have an efficient and scalable data ingestion process that can handle data from diverse sources and formats. This requires implementing robust data integration tools and practices, such as data validation, data cleansing, and metadata management.

article thumbnail

Unified DataOps: Components, Challenges, and How to Get Started

Databand.ai

Unified DataOps represents a fresh approach to managing and synchronizing data operations across several domains, including data engineering, data science, DevOps, and analytics. The goal of this strategy is to streamline the entire process of extracting insights from raw data by removing silos between teams and technologies.

article thumbnail

ELT Process: Key Components, Benefits, and Tools to Build ELT Pipelines

AltexSoft

For example, Online Analytical Processing (OLAP) systems only allow relational data structures so the data has to be reshaped into the SQL-readable format beforehand. In ELT, raw data is loaded into the destination, and then it receives transformations when it’s needed. ELT allows them to work with the data directly.

Process 52
article thumbnail

15+ Must Have Data Engineer Skills in 2023

Knowledge Hut

Technical Data Engineer Skills 1.Python Python Python is one of the most looked upon and popular programming languages, using which data engineers can create integrations, data pipelines, integrations, automation, and data cleansing and analysis.

article thumbnail

100+ Big Data Interview Questions and Answers 2023

ProjectPro

Big data operations require specialized tools and techniques since a relational database cannot manage such a large amount of data. Big data enables businesses to gain a deeper understanding of their industry and helps them extract valuable information from the unstructured and raw data that is regularly collected.