Remove Data Governance Remove Data Lake Remove Metadata
article thumbnail

Level Up Your Data Platform With Active Metadata

Data Engineering Podcast

Summary Metadata is the lifeblood of your data platform, providing information about what is happening in your systems. In order to level up their value a new trend of active metadata is being implemented, allowing use cases like keeping BI reports up to date, auto-scaling your warehouses, and automated data governance.

Metadata 130
article thumbnail

Building A Data Governance Bridge Between Cloud And Datacenters For The Enterprise At Privacera

Data Engineering Podcast

Summary Data governance is a practice that requires a high degree of flexibility and collaboration at the organizational and technical levels. The growing prominence of cloud and hybrid environments in data management adds additional stress to an already complex endeavor.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Being Data Driven At Stripe With Trino And Iceberg

Data Engineering Podcast

In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform. What are the other systems that feed into and rely on the Trino/Iceberg service?

Data Lake 147
article thumbnail

What Are the Best Data Modeling Methodologies & Processes for My Data Lake?

phData: Data Engineering

With the amount of data companies are using growing to unprecedented levels, organizations are grappling with the challenge of efficiently managing and deriving insights from these vast volumes of structured and unstructured data. What is a Data Lake? Consistency of data throughout the data lake.

article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

Data lakes are useful, flexible data storage repositories that enable many types of data to be stored in its rawest state. Traditionally, after being stored in a data lake, raw data was then often moved to various destinations like a data warehouse for further processing, analysis, and consumption.

article thumbnail

Data Warehouse vs Data Lake vs Data Lakehouse: Definitions, Similarities, and Differences

Monte Carlo

That’s why it’s essential for teams to choose the right architecture for the storage layer of their data stack. But, the options for data storage are evolving quickly. Different vendors offering data warehouses, data lakes, and now data lakehouses all offer their own distinct advantages and disadvantages for data teams to consider.

article thumbnail

Pillars of Knowledge, Best Practices for Data Governance

Cloudera

And if data security tops IT concerns, data governance should be their second priority. Not only is it critical to protect data, but data governance is also the foundation for data-driven businesses and maximizing value from data analytics. But it’s still not easy. But it’s still not easy.