Remove Data Ingestion Remove Datasets Remove Unstructured Data
article thumbnail

Is Apache Iceberg the New Hadoop? Navigating the Complexities of Modern Data Lakehouses

Data Engineering Weekly

In the mid-2000s, Hadoop emerged as a groundbreaking solution for processing massive datasets. It promised to address key pain points: Scaling: Handling ever-increasing data volumes. Speed: Accelerating data insights. Like Hadoop, it aims to tackle scalability, cost, speed, and data silos.

Hadoop 58
article thumbnail

The Challenge of Data Quality and Availability—And Why It’s Holding Back AI and Analytics

Striim

Siloed storage : Critical business data is often locked away in disconnected databases, preventing a unified view. Incomplete records : Missing values or partial datasets lead to inaccurate AI predictions and poor business decisions. Delayed data ingestion : Batch processing delays insights, making real-time decision-making impossible.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Unstructured Data: Examples, Tools, Techniques, and Best Practices

AltexSoft

In today’s data-driven world, organizations amass vast amounts of information that can unlock significant insights and inform decision-making. A staggering 80 percent of this digital treasure trove is unstructured data, which lacks a pre-defined format or organization. What is unstructured data?

article thumbnail

Why Open Table Format Architecture is Essential for Modern Data Systems

phData: Data Engineering

The world we live in today presents larger datasets, more complex data, and diverse needs, all of which call for efficient, scalable data systems. Open Table Format (OTF) architecture now provides a solution for efficient data storage, management, and processing while ensuring compatibility across different platforms.

article thumbnail

How to Design a Modern, Robust Data Ingestion Architecture

Monte Carlo

A data ingestion architecture is the technical blueprint that ensures that every pulse of your organization’s data ecosystem brings critical information to where it’s needed most. Ensuring all relevant data inputs are accounted for is crucial for a comprehensive ingestion process. A typical data ingestion flow.

article thumbnail

Introducing Vector Search on Rockset: How to run semantic search with OpenAI and Rockset

Rockset

Organizations have continued to accumulate large quantities of unstructured data, ranging from text documents to multimedia content to machine and sensor data. Comprehending and understanding how to leverage unstructured data has remained challenging and costly, requiring technical depth and domain expertise.

article thumbnail

Evaluating Data Observability Tools: A Comprehensive Guide

Data Engineering Weekly

Decoupling of Storage and Compute : Data lakes allow observability tools to run alongside core data pipelines without competing for resources by separating storage from compute resources. This opens up new possibilities for monitoring and diagnosing data issues across various sources.