article thumbnail

Stream Rows and Kafka Topics Directly into Snowflake with Snowpipe Streaming

Snowflake

This solution is both scalable and reliable, as we have been able to effortlessly ingest upwards of 1GB/s throughput.” Rather than streaming data from source into cloud object stores then copying it to Snowflake, data is ingested directly into a Snowflake table to reduce architectural complexity and reduce end-to-end latency.

Kafka 134
article thumbnail

A Dive into Apache Flume: Installation, Setup, and Configuration

Analytics Vidhya

Introduction Apache Flume is a tool/service/data ingestion mechanism for gathering, aggregating, and delivering huge amounts of streaming data from diverse sources, such as log files, events, and so on, to centralized data storage. Flume is a tool that is very dependable, distributed, and customizable.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Best Practices for Data Ingestion with Snowflake: Part 3 

Snowflake

Welcome to the third blog post in our series highlighting Snowflake’s data ingestion capabilities, covering the latest on Snowpipe Streaming (currently in public preview) and how streaming ingestion can accelerate data engineering on Snowflake. What is Snowpipe Streaming?

article thumbnail

Comparing Snowflake Data Ingestion Methods with Striim

Striim

Introduction In the fast-evolving world of data integration, Striim’s collaboration with Snowflake stands as a beacon of innovation and efficiency. Striim’s integration with Snowpipe Streaming represents a significant advancement in real-time data ingestion into Snowflake.

article thumbnail

What is Data Ingestion? Types, Frameworks, Tools, Use Cases

Knowledge Hut

An end-to-end Data Science pipeline starts from business discussion to delivering the product to the customers. One of the key components of this pipeline is Data ingestion. It helps in integrating data from multiple sources such as IoT, SaaS, on-premises, etc., What is Data Ingestion?

article thumbnail

Tame The Entropy In Your Data Stack And Prevent Failures With Sifflet

Data Engineering Podcast

The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java.

Data Lake 130
article thumbnail

Machine Learning with Python, Jupyter, KSQL and TensorFlow

Confluent

It allows real-time data ingestion, processing, model deployment and monitoring in a reliable and scalable way. This blog post focuses on how the Kafka ecosystem can help solve the impedance mismatch between data scientists, data engineers and production engineers. You can still import other models if you want (e.g.,