Remove Data Ingestion Remove Metadata Remove Structured Data
article thumbnail

Data Engineering Zoomcamp – Data Ingestion (Week 2)

Hepta Analytics

DE Zoomcamp 2.2.1 – Introduction to Workflow Orchestration Following last weeks blog , we move to data ingestion. We already had a script that downloaded a csv file, processed the data and pushed the data to postgres database. This week, we got to think about our data ingestion design.

article thumbnail

What Are the Best Data Modeling Methodologies & Processes for My Data Lake?

phData: Data Engineering

Want to learn more about data governance? Check out our Data Governance on Snowflake blog! Metadata Management Data modeling methodologies help in managing metadata within the data lake. Metadata describes the characteristics, attributes, and context of the data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

Instead of relying on traditional hierarchical structures and predefined schemas, as in the case of data warehouses, a data lake utilizes a flat architecture. This structure is made efficient by data engineering practices that include object storage. Watch our video explaining how data engineering works.

article thumbnail

Accelerate your Data Migration to Snowflake

RandomTrees

A combination of structured and semi structured data can be used for analysis and loaded into the cloud database without the need of transforming into a fixed relational scheme first. This stage handles all the aspects of data storage like organization, file size, structure, compression, metadata, statistics.

article thumbnail

Creating Value With a Data-Centric Culture: Essential Capabilities to Treat Data as a Product

Ascend.io

Acting as the core infrastructure, data pipelines include the crucial steps of data ingestion, transformation, and sharing. Data Ingestion Data in today’s businesses come from an array of sources, including various clouds, APIs, warehouses, and applications.

article thumbnail

Data Collection for Machine Learning: Steps, Methods, and Best Practices

AltexSoft

Read our article on Hotel Data Management to have a full picture of what information can be collected to boost revenue and customer satisfaction in hospitality. While all three are about data acquisition, they have distinct differences. Key differences between structured, semi-structured, and unstructured data.

article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

Traditionally, after being stored in a data lake, raw data was then often moved to various destinations like a data warehouse for further processing, analysis, and consumption. Databricks Data Catalog and AWS Lake Formation are examples in this vein. AWS is one of the most popular data lake vendors.