Remove Data Ingestion Remove Metadata Remove Unstructured Data
article thumbnail

Manufacturing Data Ingestion into Snowflake

Snowflake

requires multiple categories of data, from time series and transactional data to structured and unstructured data. initiatives, such as improving efficiency and reducing downtime by including broader data sets (both internal and external), offers businesses even greater value and precision in the results.

article thumbnail

Introducing Vector Search on Rockset: How to run semantic search with OpenAI and Rockset

Rockset

Organizations have continued to accumulate large quantities of unstructured data, ranging from text documents to multimedia content to machine and sensor data. Comprehending and understanding how to leverage unstructured data has remained challenging and costly, requiring technical depth and domain expertise.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Why Open Table Format Architecture is Essential for Modern Data Systems

phData: Data Engineering

First, we create an Iceberg table in Snowflake and then insert some data. Then, we add another column called HASHKEY , add more data, and locate the S3 file containing metadata for the iceberg table. In the screenshot below, we can see that the metadata file for the Iceberg table retains the snapshot history.

article thumbnail

5 Layers of Data Lakehouse Architecture Explained

Monte Carlo

This architecture format consists of several key layers that are essential to helping an organization run fast analytics on structured and unstructured data. Table of Contents What is data lakehouse architecture? The 5 key layers of data lakehouse architecture 1. Ingestion layer 2. Metadata layer 4.

article thumbnail

Data Lakehouse Architecture Explained: 5 Layers

Monte Carlo

This architecture format consists of several key layers that are essential to helping an organization run fast analytics on structured and unstructured data. Table of Contents What is data lakehouse architecture? The 5 key layers of data lakehouse architecture 1. Ingestion layer 2. Metadata layer 4.

article thumbnail

The Data Integration Solution Checklist: Top 10 Considerations

Precisely

A true enterprise-grade integration solution calls for source and target connectors that can accommodate: VSAM files COBOL copybooks open standards like JSON modern platforms like Amazon Web Services ( AWS ), Confluent , Databricks , or Snowflake Questions to ask each vendor: Which enterprise data sources and targets do you support?

article thumbnail

Snowflake and the Pursuit Of Precision Medicine

Snowflake

Also, the associated business metadata for omics, which make it findable for later use, are dynamic and complex and need to be captured separately. Additionally, the fact that they need to be standardized makes the data discovery effort challenging for downstream analysis.