Remove Data Ingestion Remove Raw Data Remove Structured Data
article thumbnail

How to Design a Modern, Robust Data Ingestion Architecture

Monte Carlo

A data ingestion architecture is the technical blueprint that ensures that every pulse of your organization’s data ecosystem brings critical information to where it’s needed most. A typical data ingestion flow. Popular Data Ingestion Tools Choosing the right ingestion technology is key to a successful architecture.

article thumbnail

Data Engineering Zoomcamp – Data Ingestion (Week 2)

Hepta Analytics

DE Zoomcamp 2.2.1 – Introduction to Workflow Orchestration Following last weeks blog , we move to data ingestion. We already had a script that downloaded a csv file, processed the data and pushed the data to postgres database. This week, we got to think about our data ingestion design.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

From Schemaless Ingest to Smart Schema: Enabling SQL on Raw Data

Rockset

You have complex, semi-structured data—nested JSON or XML, for instance, containing mixed types, sparse fields, and null values. It's messy, you don't understand how it's structured, and new fields appear every so often. Without a known schema, it would be difficult to adequately frame the questions you want to ask of the data.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

These data sources serve as the starting point for the pipeline, providing the raw data that will be ingested, processed, and analyzed. Data Collection/Ingestion The next component in the data pipeline is the ingestion layer, which is responsible for collecting and bringing data into the pipeline.

article thumbnail

Data Vault on Snowflake: Feature Engineering and Business Vault

Snowflake

Collecting, cleaning, and organizing data into a coherent form for business users to consume are all standard data modeling and data engineering tasks for loading a data warehouse. Feature engineering: Data is transformed to support ML model training. ML workflow, ubr.to/3EJHjvm

article thumbnail

Smart Schema: Enabling SQL Queries on Semi-Structured Data

Rockset

In this blog post, we show how Rockset’s Smart Schema feature lets developers use real-time SQL queries to extract meaningful insights from raw semi-structured data ingested without a predefined schema. This is particularly true given the nature of real-world data.

article thumbnail

Data Science vs Artificial Intelligence [Top 10 Differences]

Knowledge Hut

Let us now look into the differences between AI and Data Science: Data Science vs Artificial Intelligence [Comparison Table] SI Parameters Data Science Artificial Intelligence 1 Basics Involves processes such as data ingestion, analysis, visualization, and communication of insights derived.