Remove Data Lake Remove Data Pipeline Remove Raw Data
article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Data pipelines are the backbone of your business’s data architecture. Implementing a robust and scalable pipeline ensures you can effectively manage, analyze, and organize your growing data. We’ll answer the question, “What are data pipelines?” Table of Contents What are Data Pipelines?

article thumbnail

8 Essential Data Pipeline Design Patterns You Should Know

Monte Carlo

Whether it’s customer transactions, IoT sensor readings, or just an endless stream of social media hot takes, you need a reliable way to get that data from point A to point B while doing something clever with it along the way. That’s where data pipeline design patterns come in. Data Mesh Pattern 8.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Tips to Build a Robust Data Lake Infrastructure

DareData

Learn how we build data lake infrastructures and help organizations all around the world achieving their data goals. In today's data-driven world, organizations are faced with the challenge of managing and processing large volumes of data efficiently.

article thumbnail

How to Build a Data Pipeline in 6 Steps

Ascend.io

But let’s be honest, creating effective, robust, and reliable data pipelines, the ones that feed your company’s reporting and analytics, is no walk in the park. From building the connectors to ensuring that data lands smoothly in your reporting warehouse, each step requires a nuanced understanding and strategic approach.

article thumbnail

Data Warehouse vs Data Lake vs Data Lakehouse: Definitions, Similarities, and Differences

Monte Carlo

That’s why it’s essential for teams to choose the right architecture for the storage layer of their data stack. But, the options for data storage are evolving quickly. Different vendors offering data warehouses, data lakes, and now data lakehouses all offer their own distinct advantages and disadvantages for data teams to consider.

article thumbnail

Automated Data Pipelines: What You Need to Know

Ascend.io

The demands of building, scaling, and maintaining data pipelines have grown increasingly complex and error-prone. Data engineers are now drowning in repetitive tasks, aspiring to drive data-backed decisions. Traditional approaches to building these pipelines have showcased their vulnerabilities.

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

In 2010, a transformative concept took root in the realm of data storage and analytics — a data lake. The term was coined by James Dixon , Back-End Java, Data, and Business Intelligence Engineer, and it started a new era in how organizations could store, manage, and analyze their data. What is a data lake?