Remove Data Lake Remove Data Process Remove Hadoop
article thumbnail

Exploring Processing Patterns For Streaming Data Integration In Your Data Lake

Data Engineering Podcast

Summary One of the perennial challenges posed by data lakes is how to keep them up to date as new data is collected. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.

Data Lake 100
article thumbnail

Why Open Table Format Architecture is Essential for Modern Data Systems

phData: Data Engineering

Note : Cloud Data warehouses like Snowflake and Big Query already have a default time travel feature. However, this feature becomes an absolute must-have if you are operating your analytics on top of your data lake or lakehouse. It can also be integrated into major data platforms like Snowflake.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to learn data engineering

Christophe Blefari

Data engineering inherits from years of data practices in US big companies. Hadoop initially led the way with Big Data and distributed computing on-premise to finally land on Modern Data Stack — in the cloud — with a data warehouse at the center. What is Hadoop? Is it really modern?

article thumbnail

Cloudera announces support for Azure’s next-generation Data Lake Store

Cloudera

The Cloudera platform delivers a one-stop shop that allows you to store any kind of data, process and analyze it in many different ways in a single environment, and integrate with the rest of your data infrastructure. As a Hadoop developer, I loved that! But working with cloud storage has often been a compromise.

article thumbnail

Ripple's Data Evolution: Leveraging Databricks for Next-Gen XRP Ledger Analytics

Ripple Engineering

We recently embarked on a significant data platform migration, transitioning from Hadoop to Databricks, a move motivated by our relentless pursuit of excellence and our contributions to the XRP Ledger's (XRPL) data analytics. Why Databricks Emerged as the Top Contender 1.

Hadoop 96
article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

Data lakes are useful, flexible data storage repositories that enable many types of data to be stored in its rawest state. Traditionally, after being stored in a data lake, raw data was then often moved to various destinations like a data warehouse for further processing, analysis, and consumption.

article thumbnail

Data Lake vs Data Warehouse - Working Together in the Cloud

ProjectPro

Data Lake vs Data Warehouse = Load First, Think Later vs Think First, Load Later” The terms data lake and data warehouse are frequently stumbled upon when it comes to storing large volumes of data. Data Warehouse Architecture What is a Data lake? What is a Data lake?