Remove Data Lake Remove Data Warehouse Remove High Quality Data
article thumbnail

Using Trino And Iceberg As The Foundation Of Your Data Lakehouse

Data Engineering Podcast

Summary A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Data lakes are notoriously complex. Go to dataengineeringpodcast.com/dagster today to get started. Your first 30 days are free!

Data Lake 262
article thumbnail

Tackling Real Time Streaming Data With SQL Using RisingWave

Data Engineering Podcast

In this episode Yingjun Wu explains how it is architected to power analytical workflows on continuous data flows, and the challenges of making it responsive and scalable. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex.

SQL 173
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Modern Customer Data Platform Principles

Data Engineering Podcast

In this episode Tasso Argyros, CEO of ActionIQ, gives a summary of the major epochs in database technologies and how he is applying the capabilities of cloud data warehouses to the challenge of building more comprehensive experiences for end-users through a modern customer data platform (CDP).

Data Lake 147
article thumbnail

X-Ray Vision For Your Flink Stream Processing With Datorios

Data Engineering Podcast

Data lakes are notoriously complex. Your host is Tobias Macey and today I'm interviewing Ronen Korman and Stav Elkayam about pulling back the curtain on your real-time data streams by bringing intuitive observability to Flink streams Interview Introduction How did you get involved in the area of data management?

Process 147
article thumbnail

Data Engineering Weekly #206

Data Engineering Weekly

Shifting left involves moving data processing upstream, closer to the source, enabling broader access to high-quality data through well-defined data products and contracts, thus reducing duplication, enhancing data integrity, and bridging the gap between operational and analytical data domains.

article thumbnail

What is an AI Data Engineer? 4 Important Skills, Responsibilities, & Tools

Monte Carlo

There are dozens of data engineering tools available on the market, so familiarity with a wide variety of these can increase your attractiveness as an AI data engineering candidate. Data Storage Solutions As we all know, data can be stored in a variety of ways.

article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

Cloud computing has made it much easier to integrate data sets, but that’s only the beginning. Creating a data lake has become much easier, but that’s only ten percent of the job of delivering analytics to users. It often takes months to progress from a data lake to the final delivery of insights.

Process 98