This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Summary Building and maintaining a datalake is a choose your own adventure of tools, services, and evolving best practices. The flexibility and freedom that datalakes provide allows for generating significant value, but it can also lead to anti-patterns and inconsistent quality in your analytics.
Summary One of the perennial challenges posed by datalakes is how to keep them up to date as new data is collected. In this episode Ori Rafael shares his experiences from Upsolver and building scalable stream processing for integrating and analyzing data, and what the tradeoffs are when coming from a batch oriented mindset.
Summary Datalakes offer a great deal of flexibility and the potential for reduced cost for your analytics, but they also introduce a great deal of complexity. In order to bring the DBA into the new era of data management the team at Upsolver added a SQL interface to their datalake platform.
In this guide, we’ll explore the patterns that can help you design data pipelines that actually work. Table of Contents Common Data Pipeline Design Patterns Explained 1. LambdaArchitecture Pattern 4. Kappa Architecture Pattern 5. Data Mesh Pattern 8. Batch Processing Pattern 2.
Data ingestion is the process of collecting data from various sources and moving it to your datawarehouse or lake for processing and analysis. It is the first step in modern data management workflows. Source : Fundamentals of Data Engineering by Joe Reis and Matt Housley.
Data Warehousing: Data warehousing utilizes and builds a warehouse for storing data. A data engineer interacts with this warehouse almost on an everyday basis. Data Analytics: A data engineer works with different teams who will leverage that data for business solutions.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content