This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data.
Summary A data lakehouse is intended to combine the benefits of datalakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Datalakes are notoriously complex. Visit [dataengineeringpodcast.com/data-council]([link] and use code *depod20* to register today!
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
These practices are crucial for building robust and scalable data pipelines, maintaining data quality, and enabling data-driven decision-making. Let us dive into some of the crucial best practices for data engineering that data engineers must implement in their dataworkflows and projects.
The pathway from ETL to actionable analytics can often feel disconnected and cumbersome, leading to frustration for data teams and long wait times for business users. And even when we manage to streamline the dataworkflow, those insights aren’t always accessible to users unfamiliar with antiquated business intelligence tools.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. Datalakes in various forms have been gaining significant popularity as a unified interface to an organization's analytics. When is Fabric the wrong choice?
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management This episode is brought to you by Datafold – a testing automation platform for data engineers that prevents data quality issues from entering every part of your dataworkflow, from migration to dbt deployment.
In this episode Yingjun Wu explains how it is architected to power analytical workflows on continuous data flows, and the challenges of making it responsive and scalable. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex.
In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management This episode is brought to you by Datafold – a testing automation platform for data engineers that prevents data quality issues from entering every part of your dataworkflow, from migration to dbt deployment.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
He highlights the role of data teams in modern organizations and how Synq is empowering them to achieve this. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex.
Datalakes are notoriously complex. Starburst Logo]([link] This episode is brought to you by Starburst - an end-to-end data lakehouse platform for data engineers who are battling to build and scale high quality data pipelines on the datalake. Datalakes are notoriously complex.
Summary A significant portion of dataworkflows involve storing and processing information in database engines. In this episode Gleb Mezhanskiy, founder and CEO of Datafold, discusses the different error conditions and solutions that you need to know about to ensure the accuracy of your data. Datalakes are notoriously complex.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
In this episode Andrew Jefferson explains the complexities of building a robust system for data sharing, the techno-social considerations, and how the Bobsled platform that he is building aims to simplify the process.
In this episode Tasso Argyros, CEO of ActionIQ, gives a summary of the major epochs in database technologies and how he is applying the capabilities of cloud data warehouses to the challenge of building more comprehensive experiences for end-users through a modern customer data platform (CDP).
Summary Data lakehouse architectures are gaining popularity due to the flexibility and cost effectiveness that they offer. The link that bridges the gap between datalake and warehouse capabilities is the catalog. Datalakes are notoriously complex. What is involved in integrating Nessie into a given data stack?
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. And Starburst does all of this on an open architecture with first-class support for Apache Iceberg, Delta Lake and Hudi, so you always maintain ownership of your data.
Datalakes are notoriously complex. Starburst Logo]([link] This episode is brought to you by Starburst - an end-to-end data lakehouse platform for data engineers who are battling to build and scale high quality data pipelines on the datalake. Datalakes are notoriously complex.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Azure Data Factory 2. Azure DataLake Storage 7. Azure Logic Apps Azure ETL Best Practices for Big Data Projects Get Your Hands-on Azure ETL Projects with ProjectPro! He explores their collaborative potential in orchestrating, exploring, and analyzing data, shaping a secure and comprehensive data engineering landscape.
This episode is brought to you by Datafold – a testing automation platform for data engineers that finds data quality issues for every part of your dataworkflow, from migration to deployment. Datafold has recently launched a 3-in-1 product experience to support accelerated data migrations. Datafold :  OR extract-load-transform (ELT).
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
It incorporates elements from several Microsoft products working together, like Power BI, Azure Synapse Analytics, Data Factory, and OneLake, into a single SaaS experience. No matter the workload, Fabric stores all data on OneLake, a single, unified datalake built on the Delta Lake model.
If you are migrating to a modern data stack, Datafold can also help you automate data and code validation to speed up the migration. Learn more about Datafold by visiting dataengineeringpodcast.com/datafold Datalakes are notoriously complex. Paola Graziano by The Freak Fandango Orchestra / CC BY-SA 3.0
In this episode Andrey Korchack, CTO of fintech startup Monite, discusses the complexities of designing and implementing a data platform in that sector. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex.
TL;DR After setting up and organizing the teams, we are describing 4 topics to make data mesh a reality. With this 3rd platform generation, you have more real time data analytics and a cost reduction because it is easier to manage this infrastructure in the cloud thanks to managed services.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
Datalakes are notoriously complex. For data engineers who battle to build and scale high quality dataworkflows on the datalake, Starburst powers petabyte-scale SQL analytics fast, at a fraction of the cost of traditional methods, so that you can meet all your data needs ranging from AI to data applications to complete analytics.
[link] Affirm: Expressive Time Travel and Data Validation for Financial Workloads Affirm migrated from daily MySQL snapshots to Change Data Capture (CDC) replay using Apache Iceberg for its datalake, improving data integrity and governance. link] All rights reserved ProtoGrowth Inc, India.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Datalakes are notoriously complex. Powered by Trino, the query engine Apache Iceberg was designed for, Starburst is an open platform with support for all table formats including Apache Iceberg, Hive, and Delta Lake.
Design A Data Integration Pipeline Using Airflow And dbt You will develop a comprehensive data pipeline using the Airflow data integration platform in this retail data pipeline project. These steps ensure smooth data processing, maintain data integrity, and enable seamless analysis in retail data environments.
In this episode Abe Gong brings his experiences with the Great Expectations project and community to discuss the technical and organizational considerations involved in implementing these constraints to your dataworkflows.
“Unlock the potential of your data with Azure Databricks: a unified analytics platform that combines the power of Apache Spark with the ease of Azure.” ” Azure Databricks is a fully managed service provided by Microsoft that offers the capabilities to create an open datalake house within the Azure cloud environment.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content