Remove Data Lake Remove NoSQL Remove Structured Data
article thumbnail

Why Real-Time Analytics Requires Both the Flexibility of NoSQL and Strict Schemas of SQL Systems

Rockset

Traditional databases, with their wholly-inflexible structures, are brittle. So are schemaless NoSQL databases, which capably ingest firehoses of data but are poor at extracting complex insights from that data. And the same risk of data errors and data downtime also exists. NoSQL Comes to the Rescue.

NoSQL 52
article thumbnail

Data Lake vs Data Warehouse - Working Together in the Cloud

ProjectPro

Data Lake vs Data Warehouse = Load First, Think Later vs Think First, Load Later” The terms data lake and data warehouse are frequently stumbled upon when it comes to storing large volumes of data. Data Warehouse Architecture What is a Data lake?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

In an ETL-based architecture, data is first extracted from source systems, then transformed into a structured format, and finally loaded into data stores, typically data warehouses. This method is advantageous when dealing with structured data that requires pre-processing before storage.

article thumbnail

Most important Data Engineering Concepts and Tools for Data Scientists

DareData

For data scientists, these skills are extremely helpful when it comes to manage and build more optimized data transformation processes, helping models achieve better speed and relability when set in production. Examples of NoSQL databases include MongoDB or Cassandra. Introduction to Designing Data Lakes in AWS.

article thumbnail

A Prequel to Data Mesh

Towards Data Science

New data formats emerged — JSON, Avro, Parquet, XML etc. Result: Hadoop & NoSQL frameworks emerged. Data lakes were introduced to store the new data formats. Result: Cloud data warehouse offerings emerged as preferred solutions for relational and semi-structured data. So what was missing?

article thumbnail

Best Morgan Stanley Data Engineer Interview Questions

U-Next

A solid understanding of relational databases and SQL language is a must-have skill, as an ability to manipulate large amounts of data effectively. A good Data Engineer will also have experience working with NoSQL solutions such as MongoDB or Cassandra, while knowledge of Hadoop or Spark would be beneficial.

article thumbnail

Data Modeling That Evolves With Your Business Using Data Vault

Data Engineering Podcast

What are some of the foundational skills and knowledge that are necessary for effective modeling of data warehouses? How has the era of data lakes, unstructured/semi-structured data, and non-relational storage engines impacted the state of the art in data modeling?

Data Lake 100