This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Key Takeaways: Prioritize metadata maturity as the foundation for scalable, impactful datagovernance. Recognize that artificial intelligence is a datagovernance accelerator and a process that must be governed to monitor ethical considerations and risk.
The vast amounts of data generated daily require advanced tools for efficient management and analysis. Enter agentic AI, a type of artificial intelligence set to transform enterprise datamanagement. Many enterprises face overwhelming data sources, from structured databases to unstructured social media feeds.
In an effort to better understand where datagovernance is heading, we spoke with top executives from IT, healthcare, and finance to hear their thoughts on the biggest trends, key challenges, and what insights they would recommend. With that, let’s get into the governance trends for data leaders! No problem!
Datagovernance is the binding force between these two parts of the organization. Nicola Askham found her way into datagovernance by accident, and stayed because of the benefit that she was able to provide by serving as a bridge between the technology and business. What are some of the pitfalls in datagovernance?
Key Takeaways: Interest in datagovernance is on the rise 71% of organizations report that their organization has a datagovernance program, compared to 60% in 2023. Datagovernance is a top data integrity challenge, cited by 54% of organizations second only to data quality (56%).
Key Takeaways: New AI-powered innovations in the Precisely Data Integrity Suite help you boost efficiency, maximize the ROI of data investments, and make confident, data-driven decisions. These enhancements improve data accessibility, enable business-friendly governance, and automate manual processes.
(Not to mention the crazy stories about Gen AI making up answers without the data to back it up!) Are we allowed to use all the data, or are there copyright or privacy concerns? These are all big questions about the accessibility, quality, and governance of data being used by AI solutions today.
Summary Datagovernance is a term that encompasses a wide range of responsibilities, both technical and process oriented. One of the more complex aspects is that of access control to the data assets that an organization is responsible for managing. What is datagovernance?
The team at Satori has a background in cybersecurity and they are using the lessons that they learned in that field to address the challenge of access control and auditing for datagovernance. This is an interesting conversation about the intersection of data and security and the lessons that can be learned in each direction.
November 15-21 marks International Fraud Awareness Week – but for many in government, that’s every week. From bogus benefits claims to fraudulent network activity, fraud in all its forms represents a significant threat to government at all levels. The Public Sector data challenge. Modernization has been a boon to government.
Summary Datagovernance is a practice that requires a high degree of flexibility and collaboration at the organizational and technical levels. The growing prominence of cloud and hybrid environments in datamanagement adds additional stress to an already complex endeavor. Closing Announcements Thank you for listening!
Key Takeaways: Data mesh is a decentralized approach to datamanagement, designed to shift creation and ownership of data products to domain-specific teams. Data fabric is a unified approach to datamanagement, creating a consistent way to manage, access, and share data across distributed environments.
When most people think of master datamanagement, they first think of customers and products. But master data encompasses so much more than data about customers and products. Challenges of Master DataManagement A decade ago, master datamanagement (MDM) was a much simpler proposition than it is today.
Key Takeaways: Data integrity is required for AI initiatives, better decision-making, and more – but data trust is on the decline. Data quality and datagovernance are the top data integrity challenges, and priorities. However, they require a strong data foundation to be effective.
State and local governments generate and store enormous amounts of data essential to their ability to deliver citizen services. But how can they capitalize on all of their data to become engines of growth and innovation, empowering and enhancing their ability to provide services and better serve their communities?
In this episode Crux CTO Mark Etherington discusses the different costs involved in managing external data, how to think about the total return on investment for your data, and how the Crux platform is architected to reduce the toil involved in managing third party data.
Key Takeaways: Data integrity is essential for AI success and reliability – helping you prevent harmful biases and inaccuracies in AI models. Robust datagovernance for AI ensures data privacy, compliance, and ethical AI use. Proactive data quality measures are critical, especially in AI applications.
In this episode Dain Sundstrom, CTO of Starburst, explains how the combination of the Trino query engine and the Iceberg table format offer the ease of use and execution speed of data warehouses with the infinite storage and scalability of data lakes. What do you have planned for the future of Trino/Starburst?
But for all the excitement and movement happening within hybrid cloud infrastructure and its potential with AI, there are still risks and challenges that need to be appropriately managed—specifically when it comes to the issue of datagovernance. The need for effective datagovernance itself is not a new phenomenon.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagement Introducing RudderStack Profiles. RudderStack Profiles takes the SaaS guesswork and SQL grunt work out of building complete customer profiles so you can quickly ship actionable, enriched data to every downstream team.
In these conversations, there are a number of questions that I hear time and time again: Will my data platform be scalable and reliable enough? How will my data stay secure and governed? Will it be easy to use for my entire team? What will costs look like?
The most effective systems are ones that intelligently bring together both human judgement and AI, these take into account model drift, confidence intervals and impact, as well as level of governance. Governance. Where and how data scientists and engineers fit into an organisational structure may vary. Model Drift. Regulation.
There were many Gartner keynotes and analyst-led sessions that had titles like: Scale Data and Analytics on Your AI Journeys” What Everyone in D&A Needs to Know About (Generative) AI: The Foundations AI Governance: Design an Effective AI Governance Operating Model The advice offered during the event was relevant, valuable, and actionable.
He highlights the role of data teams in modern organizations and how Synq is empowering them to achieve this. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagementData lakes are notoriously complex. Can you describe what Synq is and the story behind it?
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagementData lakes are notoriously complex. Data lakes in various forms have been gaining significant popularity as a unified interface to an organization's analytics. Closing Announcements Thank you for listening!
Snowflake is committed to doing just that by continually adding features to help our customers simplify how they architect their data infrastructure. Snowflake Unistore consolidates both into a single database so users get a drastically simplified architecture with less data movement and consistent security and governance controls.
Key Takeaways: Data integrity is required for AI initiatives, better decision-making, and more – but data trust is on the decline. Data quality and datagovernance are the top data integrity challenges, and priorities. However, they require a strong data foundation to be effective.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagement Dagster offers a new approach to building and running data platforms and data pipelines. Can you describe what Shortwave is and the story behind it? What is the core problem that you are addressing with Shortwave?
In this article, we will walk you through the process of implementing fine grained access control for the datagovernance framework within the Cloudera platform. In a good datagovernance strategy, it is important to define roles that allow the business to limit the level of access that users can have to their strategic data assets.
In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform. Can you describe what role Trino and Iceberg play in Stripe's data architecture?
Despite most having security and governance features, these may require the customer to integrate multiple services to provide a comprehensive solution, or worse yet, may not be available in earlier versions of the product, forcing upgrades. As a result, data often went underutilized.
In this episode Yingjun Wu explains how it is architected to power analytical workflows on continuous data flows, and the challenges of making it responsive and scalable. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagementData lakes are notoriously complex.
Announcements Hello and welcome to the Data Engineering Podcast, the show about modern datamanagement This episode is supported by Code Comments, an original podcast from Red Hat. Data observability has been gaining adoption for a number of years now, with a large focus on data warehouses.
.” — Paul Chang, Head of Payment Networks, AWS “Data warehouses are gaining a lot of momentum right now, and Snowflake is at the forefront of this trend. This is not surprising when you consider all the benefits, such as reducing complexity [and] costs and enabling zero-copy data access (ideal for centralizing datagovernance).
In August, we wrote about how in a future where distributed data architectures are inevitable, unifying and managing operational and business metadata is critical to successfully maximizing the value of data, analytics, and AI. They are free to choose the infrastructure best suited for each workload.
What are the primary data challenges blocking the path to AI success? Datagovernance tops the list, according to 62% of survey respondents. In our survey, 42% of respondents say that a shortage of skills and resources is one of the biggest challenges facing the success of their data programs, an increase from 37% in 2023.
In this episode Pete Hunt, CEO of Dagster labs, outlines these new capabilities, how they reduce the burden on data teams, and the increased collaboration that they enable across teams and business units. Can you describe what the focus of Dagster+ is and the story behind it? What problems are you trying to solve with Dagster+?
It lets you describe data more complexly and make predictions. AI-powered data engineering solutions make it easier to streamline the datamanagement process, which helps businesses find useful insights with little to no manual work. This will help make better analytics predictions and improve datamanagement.
This unification is crucial for simplifying lakehouse management, organizing data for optimal query performance, instituting governance, and declarative metadata management - all to provide an enhanced developer experience. Tables are governed as per agreed upon company standards. Tables are maintained regularly.
Challenges in Data Readiness Avinash openly discussed challenges that many enterprises face concerning data readiness, including fragmented data ecosystems, legacy systems, and inadequate datagovernance.
In this episode Andrew Jefferson explains the complexities of building a robust system for data sharing, the techno-social considerations, and how the Bobsled platform that he is building aims to simplify the process. What is the current state of the ecosystem for data sharing protocols/practices/platforms? tabular, image, etc.)
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content