Remove Data Pipeline Remove Data Process Remove Pipeline-centric
article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

The typical pharmaceutical organization faces many challenges which slow down the data team: Raw, barely integrated data sets require engineers to perform manual , repetitive, error-prone work to create analyst-ready data sets. Cloud computing has made it much easier to integrate data sets, but that’s only the beginning.

Process 98
article thumbnail

Snowflake Startup Challenge 2024: Announcing the 10 Semi-Finalists

Snowflake

The list of Top 10 semi-finalists is a perfect example: we have use cases for cybersecurity, gen AI, food safety, restaurant chain pricing, quantitative trading analytics, geospatial data, sales pipeline measurement, marketing tech and healthcare. Our sincere thanks go out to everyone who participated in this year’s competition.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

End-to-End Data Pipelines: Hitting Home Runs in Data Strategy

Ascend.io

A star-studded baseball team is analogous to an optimized “end-to-end data pipeline” — both require strategy, precision, and skill to achieve success. Just as every play and position in baseball is key to a win, each component of a data pipeline is integral to effective data management.

article thumbnail

Data Pipeline vs. ETL: Which Delivers More Value?

Ascend.io

In the modern world of data engineering, two concepts often find themselves in a semantic tug-of-war: data pipeline and ETL. Fast forward to the present day, and we now have data pipelines. Data Ingestion Data ingestion is the first step of both ETL and data pipelines.

article thumbnail

Every Company is Becoming a Software Company

Confluent

Of course, this is not to imply that companies will become only software (there are still plenty of people in even the most software-centric companies), just that the full scope of the business is captured in an integrated software defined process. Here, the bank loan business division has essentially become software.

article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. By systematically moving data through these layers, the Medallion architecture enhances the data structure in a data lakehouse environment.

article thumbnail

What is a Data Engineer?

Dataquest

A data scientist is only as good as the data they have access to. Most companies store their data in variety of formats across databases and text files. This is where data engineers come in — they build pipelines that transform that data into formats that data scientists can use.