Remove Data Pipeline Remove Engineering Remove Metadata
article thumbnail

Data Engineering Best Practices - #2. Metadata & Logging

Start Data Engineering

Data Pipeline Logging Best Practices 3.1. Metadata: Information about pipeline runs, & data flowing through your pipeline 3.2. Introduction 2. Setup & Logging architecture 3. Obtain visibility into the code’s execution sequence using text logs 3.3. Monitoring UI & Traceability 3.5.

Metadata 130
article thumbnail

Ready-to-go sample data pipelines with Dataflow

Netflix Tech

by Jasmine Omeke , Obi-Ike Nwoke , Olek Gorajek Intro This post is for all data practitioners, who are interested in learning about bootstrapping, standardization and automation of batch data pipelines at Netflix. You may remember Dataflow from the post we wrote last year titled Data pipeline asset management with Dataflow.

article thumbnail

Level Up Your Data Platform With Active Metadata

Data Engineering Podcast

Summary Metadata is the lifeblood of your data platform, providing information about what is happening in your systems. In order to level up their value a new trend of active metadata is being implemented, allowing use cases like keeping BI reports up to date, auto-scaling your warehouses, and automated data governance.

Metadata 130
article thumbnail

Data News — Week 24.11

Christophe Blefari

Cognition AI introduced Devin — Devin is the first AI software engineer, Devin can, unassisted, do software engineering tasks like fixing Github issues (13% of success, previously best was ~5%), apply to jobs on Upwork, train and fine-tune its own models. Arrow doing a lot of the data operation heavy lifting.

Metadata 272
article thumbnail

Data Pipeline Observability: A Model For Data Engineers

Databand.ai

Data Pipeline Observability: A Model For Data Engineers Eitan Chazbani June 29, 2023 Data pipeline observability is your ability to monitor and understand the state of a data pipeline at any time. We believe the world’s data pipelines need better data observability.

article thumbnail

Declarative Data Pipelines with Hoptimator

LinkedIn Engineering

However, we've found that this vertical self-service model doesn't work particularly well for data pipelines, which involve wiring together many different systems into end-to-end data flows. Data pipelines power foundational parts of LinkedIn's infrastructure, including replication between data centers.

article thumbnail

Eliminate Friction In Your Data Platform Through Unified Metadata Using OpenMetadata

Data Engineering Podcast

Summary A significant source of friction and wasted effort in building and integrating data management systems is the fragmentation of metadata across various tools. Data engineers struggling with unreliable data need look no further than Monte Carlo, the world’s first end-to-end, fully automated Data Observability Platform!

Metadata 100