Remove Data Pipeline Remove Raw Data Remove Structured Data
article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Data pipelines are the backbone of your business’s data architecture. Implementing a robust and scalable pipeline ensures you can effectively manage, analyze, and organize your growing data. We’ll answer the question, “What are data pipelines?” Table of Contents What are Data Pipelines?

article thumbnail

Data Pipeline- Definition, Architecture, Examples, and Use Cases

ProjectPro

Data pipelines are a significant part of the big data domain, and every professional working or willing to work in this field must have extensive knowledge of them. Table of Contents What is a Data Pipeline? The Importance of a Data Pipeline What is an ETL Data Pipeline?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Pipeline Architecture Explained: 6 Diagrams and Best Practices

Monte Carlo

In this post, we will help you quickly level up your overall knowledge of data pipeline architecture by reviewing: Table of Contents What is data pipeline architecture? Why is data pipeline architecture important? What is data pipeline architecture? Why is data pipeline architecture important?

article thumbnail

Simplifying BI pipelines with Snowflake dynamic tables

ThoughtSpot

Managing complex data pipelines is a major challenge for data-driven organizations looking to accelerate analytics initiatives. When created, Snowflake materializes query results into a persistent table structure that refreshes whenever underlying data changes. Now, that’s changing.

BI 111
article thumbnail

Accelerate AI Development with Snowflake

Snowflake

Here’s how Snowflake Cortex AI and Snowflake ML are accelerating the delivery of trusted AI solutions for the most critical generative AI applications: Natural language processing (NLP) for data pipelines: Large language models (LLMs) have a transformative potential, but they often batch inference integration into pipelines, which can be cumbersome.

article thumbnail

Snowflake Startup Spotlight: TDAA!

Snowflake

Right now we’re focused on raw data quality and accuracy because it’s an issue at every organization and so important for any kind of analytics or day-to-day business operation that relies on data — and it’s especially critical to the accuracy of AI solutions, even though it’s often overlooked.

article thumbnail

Moving Past ETL and ELT: Understanding the EtLT Approach

Ascend.io

In this article, we assess: The role of the data warehouse on one hand, and the data lake on the other; The features of ETL and ELT in these two architectures; The evolution to EtLT; The emerging role of data pipelines. Their task is straightforward: take the raw data and transform it into a structured, coherent format.