Remove Data Preparation Remove Database-centric Remove Pipeline-centric
article thumbnail

Bringing Automation To Data Labeling For Machine Learning With Watchful

Data Engineering Podcast

In this episode founder Shayan Mohanty explains how he and his team are bringing software best practices and automation to the world of machine learning data preparation and how it allows data engineers to be involved in the process. Data stacks are becoming more and more complex. That’s where our friends at Ascend.io

article thumbnail

Data News — Week 23.14

Christophe Blefari

At the same time Maxime Beauchemin wrote a post about Entity-Centric data modeling. In the recent years dbt simplified and revolutionised the tooling to create data models. This week I discovered SQLMesh , a all-in-one data pipelines tool. I hope he will fill the gaps. dbt, as of today, is the leading framework.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data News — Week 13.14

Christophe Blefari

At the same time Maxime Beauchemin wrote a post about Entity-Centric data modeling. In the recent years dbt simplified and revolutionised the tooling to create data models. This week I discovered SQLMesh , a all-in-one data pipelines tool. I hope he will fill the gaps. dbt, as of today, is the leading framework.

article thumbnail

?Data Engineer vs Machine Learning Engineer: What to Choose?

Knowledge Hut

Factors Data Engineer Machine Learning Definition Data engineers create, maintain, and optimize data infrastructure for data. In addition, they are responsible for developing pipelines that turn raw data into formats that data consumers can use easily. Assess the needs and goals of the business.

article thumbnail

A summary of Gartner’s recent DataOps-driven data engineering best practices article

DataKitchen

As a result, a less senior team member was made responsible for modifying a production pipeline. Create a Path To Production For Self-Service: “… business users explore data through self-service data preparation, few have established gatekeeping processes to deliver these workloads to production.”

article thumbnail

Azure Synapse vs Databricks: 2023 Comparison Guide

Knowledge Hut

It offers a wide range of services, including computing, storage, databases, machine learning, and analytics, making it a versatile choice for businesses looking to harness the power of the cloud. This cloud-centric approach ensures scalability, flexibility, and cost-efficiency for your data workloads.

article thumbnail

Building a Scalable Search Architecture

Confluent

As the databases professor at my university used to say, it depends. Using SQL to run your search might be enough for your use case, but as your project requirements grow and more advanced features are needed—for example, enabling synonyms, multilingual search, or even machine learning—your relational database might not be enough.