Remove Data Process Remove Data Workflow Remove Metadata
article thumbnail

Metadata: What Is It and Why it Matters

Ascend.io

Metadata is the information that provides context and meaning to data, ensuring it’s easily discoverable, organized, and actionable. It enhances data quality, governance, and automation, transforming raw data into valuable insights. This is what managing data without metadata feels like. Chaos, right?

article thumbnail

3. Psyberg: Automated end to end catch up

Netflix Tech

In the previous installments of this series, we introduced Psyberg and delved into its core operational modes: Stateless and Stateful Data Processing. Pipelines After Psyberg Let’s explore how different modes of Psyberg could help with a multistep data pipeline. Audit Run various quality checks on the staged data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

An Exploration Of What Data Automation Can Provide To Data Engineers And Ascend's Journey To Make It A Reality

Data Engineering Podcast

Atlan is the metadata hub for your data ecosystem. Instead of locking your metadata into a new silo, unleash its transformative potential with Atlan’s active metadata capabilities. RudderStack helps you build a customer data platform on your warehouse or data lake.

article thumbnail

The Evolution of Table Formats

Monte Carlo

At its core, a table format is a sophisticated metadata layer that defines, organizes, and interprets multiple underlying data files. Table formats incorporate aspects like columns, rows, data types, and relationships, but can also include information about the structure of the data itself.

article thumbnail

Effective Pandas Patterns For Data Engineering

Data Engineering Podcast

Matt Harrison is a Python expert with a long history of working with data who now spends his time on consulting and training. You can observe your pipelines with built in metadata search and column level lineage. What are some of the utility features that you have found most helpful for data processing?

article thumbnail

DataOps Architecture: 5 Key Components and How to Get Started

Databand.ai

DataOps is a collaborative approach to data management that combines the agility of DevOps with the power of data analytics. It aims to streamline data ingestion, processing, and analytics by automating and integrating various data workflows.

article thumbnail

DataOps Tools: Key Capabilities & 5 Tools You Must Know About

Databand.ai

DataOps , short for data operations, is an emerging discipline that focuses on improving the collaboration, integration, and automation of data processes across an organization. Accelerated Data Analytics DataOps tools help automate and streamline various data processes, leading to faster and more efficient data analytics.