Remove Data Process Remove ETL Tools Remove Unstructured Data
article thumbnail

Sqoop vs. Flume Battle of the Hadoop ETL tools

ProjectPro

Sqoop in Hadoop is mostly used to extract structured data from databases like Teradata, Oracle, etc., and Flume in Hadoop is used to sources data which is stored in various sources like and deals mostly with unstructured data. The complexity of the big data system increases with each data source.

article thumbnail

5 Reasons Why ETL Professionals Should Learn Hadoop

ProjectPro

While the initial era of ETL ignited enough sparks and got everyone to sit up, take notice and applaud its capabilities, its usability in the era of Big Data is increasingly coming under the scanner as the CIOs start taking note of its limitations. Thus, why not take the lead and prepare yourself to tackle any situation in the future?

Hadoop 52
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

The Role of an AI Data Quality Analyst

Monte Carlo

Let’s dive into the responsibilities, skills, challenges, and potential career paths for an AI Data Quality Analyst today. Table of Contents What Does an AI Data Quality Analyst Do? Tools : Familiarity with data validation tools, data wrangling tools like Pandas , and platforms such as AWS , Google Cloud , or Azure.

article thumbnail

Top 16 Data Science Job Roles To Pursue in 2024

Knowledge Hut

They use technologies like Storm or Spark, HDFS, MapReduce, Query Tools like Pig, Hive, and Impala, and NoSQL Databases like MongoDB, Cassandra, and HBase. They also make use of ETL tools, messaging systems like Kafka, and Big Data Tool kits such as SparkML and Mahout.

article thumbnail

Azure Data Factory vs AWS Glue-The Cloud ETL Battle

ProjectPro

A survey by Data Warehousing Institute TDWI found that AWS Glue and Azure Data Factory are the most popular cloud ETL tools with 69% and 67% of the survey respondents mentioning that they have been using them. Both services support structured and unstructured data. DPU-Hour in the AWS U.S.

AWS 52
article thumbnail

Moving Past ETL and ELT: Understanding the EtLT Approach

Ascend.io

For example, unlike traditional platforms with set schemas, data lakes adapt to frequently changing data structures at points where the data is loaded , accessed, and used. These fluid conditions require unstructured data environments that natively operate with constantly changing formats, data structures, and data semantics.

article thumbnail

Tips to Build a Robust Data Lake Infrastructure

DareData

We've seen this happen in dozens of our customers: data lakes serve as catalysts that empower analytical capabilities. If you work at a relatively large company, you've seen this cycle happening many times: Analytics team wants to use unstructured data on their models or analysis. And what is the reason for that?