article thumbnail

Centralize Your Data Processes With a DataOps Process Hub

DataKitchen

The typical pharmaceutical organization faces many challenges which slow down the data team: Raw, barely integrated data sets require engineers to perform manual , repetitive, error-prone work to create analyst-ready data sets. Cloud computing has made it much easier to integrate data sets, but that’s only the beginning.

Process 98
article thumbnail

Snowflake Startup Challenge 2024: Announcing the 10 Semi-Finalists

Snowflake

The list of Top 10 semi-finalists is a perfect example: we have use cases for cybersecurity, gen AI, food safety, restaurant chain pricing, quantitative trading analytics, geospatial data, sales pipeline measurement, marketing tech and healthcare. Our sincere thanks go out to everyone who participated in this year’s competition.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Good and the Bad of Apache Spark Big Data Processing

AltexSoft

Its flexibility allows it to operate on single-node machines and large clusters, serving as a multi-language platform for executing data engineering , data science , and machine learning tasks. Before diving into the world of Spark, we suggest you get acquainted with data engineering in general. Big data processing.

article thumbnail

Revolutionizing Build Analytics: How to enhance build processes with ThoughtSpot

ThoughtSpot

This article presents the challenges associated with Build Analytics and the measures we adopted to enhance the efficiency of build processes at ThoughtSpot. This realization led us to explore alternatives and develop a custom analytics pipeline integrated with the ThoughtSpot application development process.

article thumbnail

End-to-End Data Pipelines: Hitting Home Runs in Data Strategy

Ascend.io

A star-studded baseball team is analogous to an optimized “end-to-end data pipeline” — both require strategy, precision, and skill to achieve success. Just as every play and position in baseball is key to a win, each component of a data pipeline is integral to effective data management.

article thumbnail

Creating Value With a Data-Centric Culture: Essential Capabilities to Treat Data as a Product

Ascend.io

Treating data as a product is more than a concept; it’s a paradigm shift that can significantly elevate the value that business intelligence and data-centric decision-making have on the business. Data pipelines Data integrity Data lineage Data stewardship Data catalog Data product costing Let’s review each one in detail.

article thumbnail

The Race For Data Quality in a Medallion Architecture

DataKitchen

The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. By systematically moving data through these layers, the Medallion architecture enhances the data structure in a data lakehouse environment.