article thumbnail

Data News — Week 22.45

Christophe Blefari

Kovid wrote an article that tries to explain what are the ingredients of a data warehouse. A data warehouse is a piece of technology that acts on 3 ideas: the data modeling, the data storage and processing engine. Modeling is often lead by the dimensional modeling but you can also do 3NF or data vault.

BI 130
article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Striim, for instance, facilitates the seamless integration of real-time streaming data from various sources, ensuring that it is continuously captured and delivered to big data storage targets. Data storage Data storage follows.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Implementing the Netflix Media Database

Netflix Tech

A schemaless system appears less imposing for application developers that are producing the data, as it (a) spares them from the burden of planning and future-proofing the structure of their data and, (b) enables them to evolve data formats with ease and to their liking. This is depicted in Figure 1.

Media 97
article thumbnail

AWS Glue-Unleashing the Power of Serverless ETL Effortlessly

ProjectPro

You can produce code, discover the data schema, and modify it. Smooth Integration with other AWS tools AWS Glue is relatively simple to integrate with data sources and targets like Amazon Kinesis, Amazon Redshift, Amazon S3, and Amazon MSK. AWS Glue automates several processes as well.

AWS 98
article thumbnail

What is ELT (Extract, Load, Transform)? A Beginner’s Guide [SQ]

Databand.ai

ELT offers a solution to this challenge by allowing companies to extract data from various sources, load it into a central location, and then transform it for analysis. The ELT process relies heavily on the power and scalability of modern data storage systems. The data is loaded as-is, without any transformation.

article thumbnail

The Pros and Cons of Leading Data Management and Storage Solutions

The Modern Data Company

And by leveraging distributed storage and open-source technologies, they offer a cost-effective solution for handling large data volumes. In other words, the data is stored in its raw, unprocessed form, and the structure is imposed when a user or an application queries the data for analysis or processing.

article thumbnail

The Pros and Cons of Leading Data Management and Storage Solutions

The Modern Data Company

And by leveraging distributed storage and open-source technologies, they offer a cost-effective solution for handling large data volumes. In other words, the data is stored in its raw, unprocessed form, and the structure is imposed when a user or an application queries the data for analysis or processing.