article thumbnail

Implementing the Netflix Media Database

Netflix Tech

data access semantics that guarantee repeatable data read behavior for client applications. System Requirements Support for Structured Data The growth of NoSQL databases has broadly been accompanied with the trend of data “schemalessness” (e.g., key value stores generally allow storing any data under a key).

Media 97
article thumbnail

Introduction to MongoDB for Data Science

Knowledge Hut

The need for efficient and agile data management products is higher than ever before, given the ongoing landscape of data science changes. MongoDB is a NoSQL database that’s been making rounds in the data science community. What is MongoDB for Data Science? Quickly pull (fetch), filter, and reduce data.

MongoDB 52
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Strimmer: To build the data pipeline for our Strimmer service, we’ll use Striim’s streaming ETL data processing capabilities, allowing us to clean and format the data before it’s stored in the data store.

article thumbnail

Data Warehouse vs Big Data

Knowledge Hut

Unlike big data warehouse, big data focuses on processing and analyzing data in its raw and unstructured form. It employs technologies such as Apache Hadoop, Apache Spark, and NoSQL databases to handle the immense scale and complexity of big data.

article thumbnail

Top 10 MongoDB Career Options in 2024 [Job Opportunities]

Knowledge Hut

Interested in NoSQL databases? MongoDB Careers: Overview MongoDB is one of the leading NoSQL database solutions and generates a lot of demand for experts in different fields. During the era of big data and real-time analytics, businesses face challenges, and the need for skilled MongoDB professionals has grown to an order of magnitude.

MongoDB 52
article thumbnail

What is Data Engineering? Skills, Tools, and Certifications

Cloud Academy

For example, you can learn about how JSONs are integral to non-relational databases – especially data schemas, and how to write queries using JSON. The path will help you understand common data formats you might encounter as a data engineer, starting with SQL.

article thumbnail

100+ Big Data Interview Questions and Answers 2023

ProjectPro

This process involves data collection from multiple sources, such as social networking sites, corporate software, and log files. Data Storage: The next step after data ingestion is to store it in HDFS or a NoSQL database such as HBase. Data Processing: This is the final step in deploying a big data model.