Remove Data Schemas Remove Raw Data Remove Unstructured Data
article thumbnail

The Pros and Cons of Leading Data Management and Storage Solutions

The Modern Data Company

The Data Lake: A Reservoir of Unstructured Potential A data lake is a centralized repository that stores vast amounts of raw data. It can store any type of data — structured, unstructured, and semi-structured — in its native format, providing a highly scalable and adaptable solution for diverse data needs.

article thumbnail

The Pros and Cons of Leading Data Management and Storage Solutions

The Modern Data Company

The Data Lake: A Reservoir of Unstructured Potential A data lake is a centralized repository that stores vast amounts of raw data. It can store any type of data — structured, unstructured, and semi-structured — in its native format, providing a highly scalable and adaptable solution for diverse data needs.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Pros and Cons of Leading Data Management and Storage Solutions

The Modern Data Company

The Data Lake: A Reservoir of Unstructured Potential A data lake is a centralized repository that stores vast amounts of raw data. It can store any type of data — structured, unstructured, and semi-structured — in its native format, providing a highly scalable and adaptable solution for diverse data needs.

article thumbnail

A Guide to Data Pipelines (And How to Design One From Scratch)

Striim

Third-Party Data: External data sources that your company does not collect directly but integrates to enhance insights or support decision-making. These data sources serve as the starting point for the pipeline, providing the raw data that will be ingested, processed, and analyzed.

article thumbnail

What is ELT (Extract, Load, Transform)? A Beginner’s Guide [SQ]

Databand.ai

The Transform Phase During this phase, the data is prepared for analysis. This preparation can involve various operations such as cleaning, filtering, aggregating, and summarizing the data. The goal of the transformation is to convert the raw data into a format that’s easy to analyze and interpret.

article thumbnail

AWS Glue-Unleashing the Power of Serverless ETL Effortlessly

ProjectPro

But this data is not that easy to manage since a lot of the data that we produce today is unstructured. In fact, 95% of organizations acknowledge the need to manage unstructured raw data since it is challenging and expensive to manage and analyze, which makes it a major concern for most businesses.

AWS 98
article thumbnail

Monte Carlo Announces Delta Lake, Unity Catalog Integrations To Bring End-to-End Data Observability to Databricks

Monte Carlo

Traditionally, data lakes held raw data in its native format and were known for their flexibility, speed, and open source ecosystem. By design, data was less structured with limited metadata and no ACID properties. Let’s dive into what these new features are, our new integrations, and why you should care.