Remove Data Storage Remove Metadata Remove Structured Data
article thumbnail

Unlocking Effective Data Governance with Unity Catalog – Data Bricks

RandomTrees

The Unity Catalog is Databricks governance solution which integrates with Databricks workspaces and provides a centralized platform for managing metadata, data access, and security. Improved Data Discovery The tagging and documentation features in Unity Catalog facilitate better data discovery.

article thumbnail

What Are the Best Data Modeling Methodologies & Processes for My Data Lake?

phData: Data Engineering

This blog will guide you through the best data modeling methodologies and processes for your data lake, helping you make informed decisions and optimize your data management practices. What is a Data Lake? What are Data Modeling Methodologies, and Why Are They Important for a Data Lake?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Warehouse vs Data Lake vs Data Lakehouse: Definitions, Similarities, and Differences

Monte Carlo

That’s why it’s essential for teams to choose the right architecture for the storage layer of their data stack. But, the options for data storage are evolving quickly. So let’s get to the bottom of the big question: what kind of data storage layer will provide the strongest foundation for your data platform?

article thumbnail

Data Lake Explained: A Comprehensive Guide to Its Architecture and Use Cases

AltexSoft

In 2010, a transformative concept took root in the realm of data storage and analytics — a data lake. The term was coined by James Dixon , Back-End Java, Data, and Business Intelligence Engineer, and it started a new era in how organizations could store, manage, and analyze their data. Structured data sources.

article thumbnail

Taking Charge of Tables: Introducing OpenHouse for Big Data Management

LinkedIn Engineering

Open source data lakehouse deployments are built on the foundations of compute engines (like Apache Spark, Trino, Apache Flink), distributed storage (HDFS, cloud blob stores), and metadata catalogs / table formats (like Apache Iceberg, Delta, Hudi, Apache Hive Metastore). Tables are governed as per agreed upon company standards.

article thumbnail

A Flexible and Efficient Storage System for Diverse Workloads

Cloudera

Today’s platform owners, business owners, data developers, analysts, and engineers create new apps on the Cloudera Data Platform and they must decide where and how to store that data. Structured data (such as name, date, ID, and so on) will be stored in regular SQL databases like Hive or Impala databases.

Systems 87
article thumbnail

Top Data Lake Vendors (Quick Reference Guide)

Monte Carlo

Data lakes are useful, flexible data storage repositories that enable many types of data to be stored in its rawest state. Traditionally, after being stored in a data lake, raw data was then often moved to various destinations like a data warehouse for further processing, analysis, and consumption.