Remove Data Storage Remove Metadata Remove Structured Data
article thumbnail

How Apache Iceberg Is Changing the Face of Data Lakes

Snowflake

Data storage has been evolving, from databases to data warehouses and expansive data lakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.

article thumbnail

Hadoop vs Spark: Main Big Data Tools Explained

AltexSoft

Master Nodes control and coordinate two key functions of Hadoop: data storage and parallel processing of data. Worker or Slave Nodes are the majority of nodes used to store data and run computations according to instructions from a master node. HDFS master-slave structure. Data storage options.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

A Flexible and Efficient Storage System for Diverse Workloads

Cloudera

Today’s platform owners, business owners, data developers, analysts, and engineers create new apps on the Cloudera Data Platform and they must decide where and how to store that data. Structured data (such as name, date, ID, and so on) will be stored in regular SQL databases like Hive or Impala databases.

Systems 87
article thumbnail

Taking Charge of Tables: Introducing OpenHouse for Big Data Management

LinkedIn Engineering

Open source data lakehouse deployments are built on the foundations of compute engines (like Apache Spark, Trino, Apache Flink), distributed storage (HDFS, cloud blob stores), and metadata catalogs / table formats (like Apache Iceberg, Delta, Hudi, Apache Hive Metastore). Tables are governed as per agreed upon company standards.

article thumbnail

What Are the Best Data Modeling Methodologies & Processes for My Data Lake?

phData: Data Engineering

This blog will guide you through the best data modeling methodologies and processes for your data lake, helping you make informed decisions and optimize your data management practices. What is a Data Lake? What are Data Modeling Methodologies, and Why Are They Important for a Data Lake?

article thumbnail

Implementing the Netflix Media Database

Netflix Tech

A fundamental requirement for any lasting data system is that it should scale along with the growth of the business applications it wishes to serve. NMDB is built to be a highly scalable, multi-tenant, media metadata system that can serve a high volume of write/read throughput as well as support near real-time queries.

Media 97
article thumbnail

Data Warehouse vs Data Lake vs Data Lakehouse: Definitions, Similarities, and Differences

Monte Carlo

That’s why it’s essential for teams to choose the right architecture for the storage layer of their data stack. But, the options for data storage are evolving quickly. So let’s get to the bottom of the big question: what kind of data storage layer will provide the strongest foundation for your data platform?