Remove Data Storage Remove NoSQL Remove Unstructured Data
article thumbnail

What is an AI Data Engineer? 4 Important Skills, Responsibilities, & Tools

Monte Carlo

Key Differences Between AI Data Engineers and Traditional Data Engineers While traditional data engineers and AI data engineers have similar responsibilities, they ultimately differ in where they focus their efforts. Data Storage Solutions As we all know, data can be stored in a variety of ways.

article thumbnail

Unstructured Data: Examples, Tools, Techniques, and Best Practices

AltexSoft

In today’s data-driven world, organizations amass vast amounts of information that can unlock significant insights and inform decision-making. A staggering 80 percent of this digital treasure trove is unstructured data, which lacks a pre-defined format or organization. What is unstructured data?

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

NoSQL vs SQL- 4 Reasons Why NoSQL is better for Big Data applications

ProjectPro

Big Data NoSQL databases were pioneered by top internet companies like Amazon, Google, LinkedIn and Facebook to overcome the drawbacks of RDBMS. RDBMS is not always the best solution for all situations as it cannot meet the increasing growth of unstructured data.

NoSQL 49
article thumbnail

HBase vs Cassandra-The Battle of the Best NoSQL Databases

ProjectPro

NoSQL databases are the new-age solutions to distributed unstructured data storage and processing. The speed, scalability, and fail-over safety offered by NoSQL databases are needed in the current times in the wake of Big Data Analytics and Data Science technologies.

NoSQL 52
article thumbnail

Big Data Analytics: How It Works, Tools, and Real-Life Applications

AltexSoft

A growing number of companies now use this data to uncover meaningful insights and improve their decision-making, but they can’t store and process it by the means of traditional data storage and processing units. Key Big Data characteristics. Data storage and processing. NoSQL databases.

article thumbnail

Most important Data Engineering Concepts and Tools for Data Scientists

DareData

In this post, we'll discuss some key data engineering concepts that data scientists should be familiar with, in order to be more effective in their roles. These concepts include concepts like data pipelines, data storage and retrieval, data orchestrators or infrastructure-as-code.

article thumbnail

Hadoop vs Spark: Main Big Data Tools Explained

AltexSoft

Master Nodes control and coordinate two key functions of Hadoop: data storage and parallel processing of data. Worker or Slave Nodes are the majority of nodes used to store data and run computations according to instructions from a master node. Data storage options. Hadoop nodes: masters and slaves.