article thumbnail

Complete Guide to Data Transformation: Basics to Advanced

Ascend.io

It is important to note that normalization often overlaps with the data cleaning process, as it helps to ensure consistency in data formats, particularly when dealing with different sources or inconsistent units. Data Validation Data validation ensures that the data meets specific criteria before processing.

article thumbnail

Data Engineering Weekly #206

Data Engineering Weekly

Key features include workplan auctioning for resource allocation, in-progress remediation for handling data validation failures, and integration with external Kafka topics, achieving a throughput of 1.2 million entities per second in production. link] All rights reserved ProtoGrowth Inc, India.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Migration Strategies For Large Scale Systems

Data Engineering Podcast

Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Data lakes are notoriously complex.

Systems 130
article thumbnail

Data Appending vs. Data Enrichment: How to Maximize Data Quality and Insights

Precisely

Transformations: Know if there are changes made to the data upstream (e.g., If you dont know what transformations have been made to the data, Id suggest you not use it. Data validation and verification: Regularly validate both input data and the appended/enriched data to identify and correct inaccuracies before they impact decisions.

Retail 75
article thumbnail

How we reduced a 6-hour runtime in Alteryx to 9 minutes in dbt

dbt Developer Hub

One example of a popular drag-and-drop transformation tool is Alteryx which allows business analysts to transform data by dragging and dropping operators in a canvas. In this sense, dbt may be a more suitable solution to building resilient and modular data pipelines due to its focus on data modeling.

BI 83
article thumbnail

DataOps Tools: Key Capabilities & 5 Tools You Must Know About

Databand.ai

Poor data quality can lead to incorrect or misleading insights, which can have significant consequences for an organization. DataOps tools help ensure data quality by providing features like data profiling, data validation, and data cleansing.

article thumbnail

The DataOps Vendor Landscape, 2021

DataKitchen

Piperr.io — Pre-built data pipelines across enterprise stakeholders, from IT to analytics, tech, data science and LoBs. Prefect Technologies — Open-source data engineering platform that builds, tests, and runs data workflows. Genie — Distributed big data orchestration service by Netflix.