article thumbnail

Fueling Data-Driven Decision-Making with Data Validation and Enrichment Processes

Precisely

An important part of this journey is the data validation and enrichment process. Defining Data Validation and Enrichment Processes Before we explore the benefits of data validation and enrichment and how these processes support the data you need for powerful decision-making, let’s define each term.

article thumbnail

Data News — Week 24.11

Christophe Blefari

Understand how BigQuery inserts, deletes and updates — Once again Vu took time to deep dive into BigQuery internal, this time to explain how data management is done. Pandera, a data validation library for dataframes, now supports Polars. This is Croissant.

Metadata 272
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Appending vs. Data Enrichment: How to Maximize Data Quality and Insights

Precisely

After my (admittedly lengthy) explanation of what I do as the EVP and GM of our Enrich business, she summarized it in a very succinct, but new way: “Oh, you manage the appending datasets.” We often use different terms when were talking about the same thing in this case, data appending vs. data enrichment.

Retail 75
article thumbnail

Interesting startup idea: benchmarking cloud platform pricing

The Pragmatic Engineer

Storing data: data collected is stored to allow for historical comparisons. The historical dataset is over 20M records at the time of writing! This means about 275,000 up-to-date server prices, and around 240,000 benchmark scores. Web frontend:   Angular 17 with server-side rendering support (SSR).

Cloud 332
article thumbnail

Complete Guide to Data Transformation: Basics to Advanced

Ascend.io

Filling in missing values could involve leveraging other company data sources or even third-party datasets. The cleaned data would then be stored in a centralized database, ready for further analysis. This ensures that the sales data is accurate, reliable, and ready for meaningful analysis.

article thumbnail

Data Validation Testing: Techniques, Examples, & Tools

Monte Carlo

The Definitive Guide to Data Validation Testing Data validation testing ensures your data maintains its quality and integrity as it is transformed and moved from its source to its target destination. It’s also important to understand the limitations of data validation testing.

article thumbnail

Data Integrity vs. Data Validity: Key Differences with a Zoo Analogy

Monte Carlo

The data doesn’t accurately represent the real heights of the animals, so it lacks validity. Let’s dive deeper into these two crucial concepts, both essential for maintaining high-quality data. Let’s dive deeper into these two crucial concepts, both essential for maintaining high-quality data. What Is Data Validity?