article thumbnail

Cloud Data Warehouse Migrations: Success Stories from WHOOP and Nexon

Snowflake

Many of our customers — from Marriott to AT&T — start their journey with the Snowflake AI Data Cloud by migrating their data warehousing workloads to the platform. Today we’re focusing on customers who migrated from a cloud data warehouse to Snowflake and some of the benefits they saw.

article thumbnail

Data Integrity for AI: What’s Old is New Again

Precisely

The goal of this post is to understand how data integrity best practices have been embraced time and time again, no matter the technology underpinning. In the beginning, there was a data warehouse The data warehouse (DW) was an approach to data architecture and structured data management that really hit its stride in the early 1990s.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Is Apache Iceberg the New Hadoop? Navigating the Complexities of Modern Data Lakehouses

Data Engineering Weekly

But is it truly revolutionary, or is it destined to repeat the pitfalls of past solutions like Hadoop? In a recent episode of the Data Engineering Weekly podcast, we delved into this question with Daniel Palma, Head of Marketing at Estuary and a seasoned data engineer with over a decade of experience.

Hadoop 58
article thumbnail

How to get started with dbt

Christophe Blefari

dbt Core is an open-source framework that helps you organise data warehouse SQL transformation. dbt was born out of the analysis that more and more companies were switching from on-premise Hadoop data infrastructure to cloud data warehouses. This switch has been lead by modern data stack vision.

article thumbnail

Building A Better Data Warehouse For The Cloud At Firebolt

Data Engineering Podcast

Summary Data warehouse technology has been around for decades and has gone through several generational shifts in that time. The current trends in data warehousing are oriented around cloud native architectures that take advantage of dynamic scaling and the separation of compute and storage.

article thumbnail

Scale Your Analytics On The Clickhouse Data Warehouse

Data Engineering Podcast

Summary The market for data warehouse platforms is large and varied, with options for every use case. What are some of the advanced capabilities, such as SQL extensions, supported data types, etc. For someone getting started with Clickhouse can you describe how they should be thinking about data modeling?

article thumbnail

Data Warehouse vs. Data Lake

Precisely

As cloud computing platforms make it possible to perform advanced analytics on ever larger and more diverse data sets, new and innovative approaches have emerged for storing, preprocessing, and analyzing information. Hadoop, Snowflake, Databricks and other products have rapidly gained adoption.