article thumbnail

Data Integrity for AI: What’s Old is New Again

Precisely

The goal of this post is to understand how data integrity best practices have been embraced time and time again, no matter the technology underpinning. In the beginning, there was a data warehouse The data warehouse (DW) was an approach to data architecture and structured data management that really hit its stride in the early 1990s.

article thumbnail

How to get started with dbt

Christophe Blefari

dbt Core is an open-source framework that helps you organise data warehouse SQL transformation. dbt was born out of the analysis that more and more companies were switching from on-premise Hadoop data infrastructure to cloud data warehouses. This switch has been lead by modern data stack vision.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data logs: The latest evolution in Meta’s access tools

Engineering at Meta

Meta joins the Data Transfer Project and has continuously led the development of shared technologies that enable users to port their data from one platform to another. 2024: Users can access data logs in Download Your Information. What are data logs?

article thumbnail

Data Warehouse vs. Data Lake

Precisely

Data warehouse vs. data lake, each has their own unique advantages and disadvantages; it’s helpful to understand their similarities and differences. In this article, we’ll focus on a data lake vs. data warehouse. Read Many of the preferred platforms for analytics fall into one of these two categories.

article thumbnail

5 Helpful Extract & Load Practices for High-Quality Raw Data

Meltano

Setting the Stage: We need E&L practices, because “copying raw data” is more complex than it sounds. For instance, how would you know which orders got “canceled”, an operation that usually takes place in the same data record and just “modifies” it in place. But not at the ingestion level.

article thumbnail

Complete Guide to Data Transformation: Basics to Advanced

Ascend.io

What is Data Transformation? Data transformation is the process of converting raw data into a usable format to generate insights. It involves cleaning, normalizing, validating, and enriching data, ensuring that it is consistent and ready for analysis.

article thumbnail

Data Lakes vs. Data Warehouses

Grouparoo

This article looks at the options available for storing and processing big data, which is too large for conventional databases to handle. There are two main options available, a data lake and a data warehouse. What is a Data Warehouse? What is a Data Lake?