Remove Data Remove Data Engineering Remove Data Pipeline
article thumbnail

Data Engineering Projects

Start Data Engineering

Run Data Pipelines 2.1. Batch pipelines 3.3. Stream pipelines 3.4. Event-driven pipelines 3.5. LLM RAG pipelines 4. Introduction Whether you are new to data engineering or have been in the data field for a few years, one of the most challenging parts of learning new frameworks is setting them up!

article thumbnail

PyArrow vs Polars (vs DuckDB) for Data Pipelines.

Confessions of a Data Guy

We all keep hearing about Arrow this and Arrow that … seems every new tool built today for Data Engineering seems to be at least partly based on Arrow’s in-memory format. So, […] The post PyArrow vs Polars (vs DuckDB) for Data Pipelines. appeared first on Confessions of a Data Guy.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Building cost effective data pipelines with Python & DuckDB

Start Data Engineering

Building efficient data pipelines with DuckDB 4.1. Use DuckDB to process data, not for multiple users to access data 4.2. Cost calculation: DuckDB + Ephemeral VMs = dirt cheap data processing 4.3. Processing data less than 100GB? Introduction 2. Project demo 3. Use DuckDB 4.4.

article thumbnail

What Data Engineers Really Do?

Analytics Vidhya

In a data-driven world, behind-the-scenes heroes like data engineers play a crucial role in ensuring smooth data flow. A data engineer investigates the issue, identifies a glitch in the e-commerce platform’s data funnel, and swiftly implements seamless data pipelines.

article thumbnail

Snowflake’s New Python API Empowers Data Engineers to Build Modern Data Pipelines with Ease

Snowflake

In today’s data-driven world, developer productivity is essential for organizations to build effective and reliable products, accelerate time to value, and fuel ongoing innovation. This allows your applications to handle large data sets and complex workflows efficiently.

article thumbnail

How to Implement a Data Pipeline Using Amazon Web Services?

Analytics Vidhya

Introduction The demand for data to feed machine learning models, data science research, and time-sensitive insights is higher than ever thus, processing the data becomes complex. To make these processes efficient, data pipelines are necessary. appeared first on Analytics Vidhya.

article thumbnail

Data Pipeline Observability: A Model For Data Engineers

Databand.ai

Data Pipeline Observability: A Model For Data Engineers Eitan Chazbani June 29, 2023 Data pipeline observability is your ability to monitor and understand the state of a data pipeline at any time. We believe the world’s data pipelines need better data observability.