Remove Data Remove Data Engineering Remove Data Pipeline
article thumbnail

Data Engineering Projects

Start Data Engineering

Run Data Pipelines 2.1. Batch pipelines 3.3. Stream pipelines 3.4. Event-driven pipelines 3.5. LLM RAG pipelines 4. Introduction Whether you are new to data engineering or have been in the data field for a few years, one of the most challenging parts of learning new frameworks is setting them up!

article thumbnail

Data Engineering for Streaming Data on GCP

Analytics Vidhya

Introduction Companies can access a large pool of data in the modern business environment, and using this data in real-time may produce insightful results that can spur corporate success. Real-time dashboards such as GCP provide strong data visualization and actionable information for decision-makers.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How to Implement a Data Pipeline Using Amazon Web Services?

Analytics Vidhya

Introduction The demand for data to feed machine learning models, data science research, and time-sensitive insights is higher than ever thus, processing the data becomes complex. To make these processes efficient, data pipelines are necessary. appeared first on Analytics Vidhya.

article thumbnail

What Data Engineers Really Do?

Analytics Vidhya

In a data-driven world, behind-the-scenes heroes like data engineers play a crucial role in ensuring smooth data flow. A data engineer investigates the issue, identifies a glitch in the e-commerce platform’s data funnel, and swiftly implements seamless data pipelines.

article thumbnail

Building cost effective data pipelines with Python & DuckDB

Start Data Engineering

Building efficient data pipelines with DuckDB 4.1. Use DuckDB to process data, not for multiple users to access data 4.2. Cost calculation: DuckDB + Ephemeral VMs = dirt cheap data processing 4.3. Processing data less than 100GB? Introduction 2. Project demo 3. Use DuckDB 4.4.

article thumbnail

Monitoring Data Quality for Your Big Data Pipelines Made Easy

Analytics Vidhya

In the data-driven world […] The post Monitoring Data Quality for Your Big Data Pipelines Made Easy appeared first on Analytics Vidhya. Determine success by the precision of your charts, the equipment’s dependability, and your crew’s expertise. A single mistake, glitch, or slip-up could endanger the trip.

Big Data 246
article thumbnail

Data Pipeline Design Patterns - #1. Data flow patterns

Start Data Engineering

Data pipeline patterns 3.1. Multi-hop pipelines 3.3.2. Conditional/ Dynamic pipelines 3.3.3. Disconnected data pipelines 4. Source Ordering 2.3. Sink Overwritability 3. Extraction patterns 3.1.1. Time ranged 3.1.2. Full Snapshot 3.1.3. Lookback 3.1.4. Streaming 3.2. Behavioral 3.2.1. Idempotent 3.2.2.