Remove Data Remove Data Workflow Remove Metadata
article thumbnail

Data Engineering Weekly #198

Data Engineering Weekly

Editor’s Note: Launching Data & Gen-AI courses in 2025 I can’t believe DEW will reach almost its 200th edition soon. What I started as a fun hobby has become one of the top-rated newsletters in the data engineering industry. We are planning many exciting product lines to trial and launch in 2025.

article thumbnail

Bringing The Power Of The DataHub Real-Time Metadata Graph To Everyone At Acryl Data

Data Engineering Podcast

Summary The binding element of all data work is the metadata graph that is generated by all of the workflows that produce the assets used by teams across the organization. The DataHub project was created as a way to bring order to the scale of LinkedIn’s data needs. No more scripts, just SQL.

Metadata 100
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Scale Unstructured Text Analytics with Batch LLM Inference

Snowflake

Large language models (LLMs) are transforming how we extract value from this data by running tasks from categorization to summarization and more. While AI has proved that real-time conversations in natural language are possible with LLMs, extracting insights from millions of unstructured data records using these LLMs can be a game changer.

article thumbnail

Being Data Driven At Stripe With Trino And Iceberg

Data Engineering Podcast

Summary Stripe is a company that relies on data to power their products and business. In this episode Kevin Liu shares some of the interesting features that they have built by combining those technologies, as well as the challenges that they face in supporting the myriad workloads that are thrown at this layer of their data platform.

Data Lake 147
article thumbnail

Data logs: The latest evolution in Meta’s access tools

Engineering at Meta

Were sharing how Meta built support for data logs, which provide people with additional data about how they use our products. Here we explore initial system designs we considered, an overview of the current architecture, and some important principles Meta takes into account in making data accessible and easy to understand.

article thumbnail

How To Prepare Your Data Team for 2025

Ascend.io

As we approach 2025, data teams find themselves at a pivotal juncture. The rapid evolution of technology and the increasing demand for data-driven insights have placed immense pressure on these teams. The future of data teams depends on their ability to adapt to new challenges and seize emerging opportunities.

article thumbnail

Introducing the dbt MCP Server – Bringing Structured Data to AI Workflows and Agents

dbt Developer Hub

dbt is the standard for creating governed, trustworthy datasets on top of your structured data. We expect that over the coming years, structured data is going to become heavily integrated into AI workflows and that dbt will play a key role in building and provisioning this data. What is MCP? Why does this matter?