This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Much of the data we have used for analysis in traditional enterprises has been structured data. However, much of the data that is being created and will be created comes in some form of unstructured format. However, the digital era… Read more The post What is Unstructured Data?
RevOps teams want to streamline processes… Read more The post Best Automation Tools In 2025 for Data Pipelines, Integrations, and More appeared first on Seattle Data Guy. But automation isnt just for analytics.
What will data engineering look like in 2025? How will generative AI shape the tools and processesData Engineers rely on today? As the field evolves, Data Engineers are stepping into a future where innovation and efficiency take center stage.
With its easy-to-use interface and robust features, OpenCV has become the favorite of data scientists and computer vision engineers. At the core of such applications lies the science of machine learning, image processing, computer vision , and deep learning.
In Airflow, DAGs (your data pipelines) support nearly every use case. As these workflows grow in complexity and scale, efficiently identifying and resolving issues becomes a critical skill for every data engineer. This is a comprehensive guide with best practices and examples to debugging Airflow DAGs.
The Data News are here to stay, the format might vary during the year, but here we are for another year. We published videos about the Forward Data Conference, you can watch Hannes, DuckDB co-creator, keynote about Changing Large Tables. HNY 2025 ( credits ) Happy new year ✨ I wish you the best for 2025. Not really digest.
Data lineage is an instrumental part of Metas Privacy Aware Infrastructure (PAI) initiative, a suite of technologies that efficiently protect user privacy. It is a critical and powerful tool for scalable discovery of relevant data and data flows, which supports privacy controls across Metas systems.
Events Data + AI Summit Data + AI World Tour Data Intelligence Days Event Calendar Blog and Podcasts Databricks Blog Explore news, product announcements, and more Databricks Mosaic Research Blog Discover the latest in our Gen AI research Data Brew Podcast Let’s talk data! REGISTER Ready to get started?
A data engineering architecture is the structural framework that determines how data flows through an organization – from collection and storage to processing and analysis. It’s the big blueprint we data engineers follow in order to transform raw data into valuable insights.
Speaker: Shreya Rajpal, Co-Founder and CEO at Guardrails AI & Travis Addair, Co-Founder and CTO at Predibase
However, productionizing LLMs comes with a unique set of challenges such as model brittleness, total cost of ownership, data governance and privacy, and the need for consistent, accurate outputs.
Here’s where leading futurist and investor Tomasz Tunguz thinks data and AI stands at the end of 2024—plus a few predictions of my own. 2025 data engineering trends incoming. Process > Tooling (Barr) 3. Small data is the future of AI (Tomasz) 7. The lines are blurring for analysts and data engineers (Barr) 8.
Data transformations are the engine room of modern data operations — powering innovations in AI, analytics and applications. As the core building blocks of any effective data strategy, these transformations are crucial for constructing robust and scalable data pipelines. This puts data engineers in a critical position.
By Nate Rosidi , KDnuggets Market Trends & SQL Content Specialist on June 11, 2025 in Language Models Image by Author | Canva If you work in a data-related field, you should update yourself regularly. Data scientists use different tools for tasks like data visualization, data modeling, and even warehouse systems.
Key Takeaways: Prioritize metadata maturity as the foundation for scalable, impactful data governance. Recognize that artificial intelligence is a data governance accelerator and a process that must be governed to monitor ethical considerations and risk.
Think your customers will pay more for data visualizations in your application? Five years ago they may have. But today, dashboards and visualizations have become table stakes. Discover which features will differentiate your application and maximize the ROI of your embedded analytics. Brought to you by Logi Analytics.
From another, they often have quotas and limits that you, as a data engineer, have to take into account in your daily work. These limits become even more serious when they operate in a latency-sensitive context, as the one of stream processing.
We are excited to announce the acquisition of Octopai , a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making. This dampens confidence in the data and hampers access, in turn impacting the speed to launch new AI and analytic projects.
Three Zero-Cost Solutions That Take Hours, NotMonths A data quality certified pipeline. Source: unsplash.com In my career, data quality initiatives have usually meant big changes. From governance processes to costly tools to dbt implementationdata quality projects never seem to want to besmall. Created by the author using draw.io
Key Takeaways: Data mesh is a decentralized approach to data management, designed to shift creation and ownership of data products to domain-specific teams. Data fabric is a unified approach to data management, creating a consistent way to manage, access, and share data across distributed environments.
In this engaging and witty talk, industry expert Conrado Morlan will explore how artificial intelligence can transform the daily tasks of product managers into streamlined, efficient processes. Tools and AI Gadgets 🤖 Overview of essential AI tools and practical implementation tips.
Parts of data engineering 3.1. Identify what tool to use to processdata 3.3. Data flow architecture 3. Introduction 2. Requirements 3.1.1. Understand input datasets available 3.1.2. Define what the output dataset will look like 3.1.3. Define SLAs so stakeholders know what to expect 3.1.4.
Data Quality Testing: A Shared Resource for Modern Data Teams In today’s AI-driven landscape, where data is king, every role in the modern data and analytics ecosystem shares one fundamental responsibility: ensuring that incorrect data never reaches business customers. Each role touches data differently.
Many of our customers — from Marriott to AT&T — start their journey with the Snowflake AI Data Cloud by migrating their data warehousing workloads to the platform. Today we’re focusing on customers who migrated from a cloud data warehouse to Snowflake and some of the benefits they saw. million in cost savings annually.
Managing and understanding large-scale data ecosystems is a significant challenge for many organizations, requiring innovative solutions to efficiently safeguard user data. To address these challenges, we made substantial investments in advanced data understanding technologies, as part of our Privacy Aware Infrastructure (PAI).
Just by embedding analytics, application owners can charge 24% more for their product. How much value could you add? This framework explains how application enhancements can extend your product offerings. Brought to you by Logi Analytics.
Saying mainly that " Sora is a tool to extend creativity " Last point Mira has been mocked and criticised online because as a CTO she wasn't able to say on which public / licensed data Sora has been trained on. Pandera, a data validation library for dataframes, now supports Polars.
Over the last three geospatial-centric blog posts, weve covered the basics of what geospatial data is, how it works in the broader world of data and how it specifically works in Snowflake based on our native support for GEOGRAPHY , GEOMETRY and H3. But there is so much more you can do with geospatial data in your Snowflake account!
The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. By systematically moving data through these layers, the Medallion architecture enhances the data structure in a data lakehouse environment.
A Guide to the Six Types of Data Quality Dashboards Poor-quality data can derail operations, misguide strategies, and erode the trust of both customers and stakeholders. Data quality dashboards have emerged as indispensable tools, offering a clear window into the health of their data and enabling targeted actionable improvements.
Why do some embedded analytics projects succeed while others fail? We surveyed 500+ application teams embedding analytics to find out which analytics features actually move the needle. Read the 6th annual State of Embedded Analytics Report to discover new best practices. Brought to you by Logi Analytics.
In this edition, we talk to Richard Meng, co-founder and CEO of ROE AI , a startup that empowers data teams to extract insights from unstructured, multimodal data including documents, images and web pages using familiar SQL queries. I experienced the thrilling pace of AI data innovation firsthand.
Were sharing how Meta built support for data logs, which provide people with additional data about how they use our products. Here we explore initial system designs we considered, an overview of the current architecture, and some important principles Meta takes into account in making data accessible and easy to understand.
Managing and utilizing data effectively is crucial for organizational success in today's fast-paced technological landscape. The vast amounts of data generated daily require advanced tools for efficient management and analysis. Enter agentic AI, a type of artificial intelligence set to transform enterprise data management.
Agentic AI, small data, and the search for value in the age of the unstructured datastack. Heres where leading futurist and investor Tomasz Tunguz thinks data and AI stands at the end of 2024plus a few predictions of myown. 2025 data engineering trends incoming. Search: tools that leverage a corpus of data to answer questions 3.
Storytelling is more than just data visualization. Storytelling provides an organized approach for conveying data insights through visuals and narrative. Data-driven storytelling could be used to influence user actions, and ensure they understand what data matters the most.
By Bala Priya C , KDnuggets Contributing Editor & Technical Content Specialist on June 12, 2025 in Data Science Image by Author | Ideogram You dont need a rigorous math or computer science degree to get into data science. Well, most people approach data science math backwards. But why is this difficult? Probability comes next.
Agents need to access an organization's ever-growing structured and unstructured data to be effective and reliable. As data connections expand, managing access controls and efficiently retrieving accurate informationwhile maintaining strict privacy protocolsbecomes increasingly complex. text, audio) and structured (e.g.,
Effective collaboration on data and AI has never been more closely tied to success. Whether it’s helping you share data and AI models internally or build and distribute groundbreaking AI and advanced solutions, Snowflake is committed to helping you weave collaboration into the fabric of your business.
Data is often referred to as the new oil, and just like oil requires refining to become useful fuel, data also needs a similar transformation to unlock its true value. This transformation is where data warehousing tools come into play, acting as the refining process for your data.
Greg Loughnane and Chris Alexiuk in this exciting webinar to learn all about: How to design and implement production-ready systems with guardrails, active monitoring of key evaluation metrics beyond latency and token count, managing prompts, and understanding the process for continuous improvement Best practices for setting up the proper mix of open- (..)
Events Data + AI Summit Data + AI World Tour Data Intelligence Days Event Calendar Blog and Podcasts Databricks Blog Explore news, product announcements, and more Databricks Mosaic Research Blog Discover the latest in our Gen AI research Data Brew Podcast Let’s talk data! REGISTER Ready to get started?
We often use different terms when were talking about the same thing in this case, data appending vs. data enrichment. Ive noticed that “data appending” is more commonly used in industries like marketing and telecommunications, while data enrichment seems to be the preferred term in financial services and retail.
dbt is the standard for creating governed, trustworthy datasets on top of your structured data. We expect that over the coming years, structured data is going to become heavily integrated into AI workflows and that dbt will play a key role in building and provisioning this data. What is MCP? Why does this matter?
Migrating from a traditional data warehouse to a cloud data platform is often complex, resource-intensive and costly. At Snowflake, we believe every organization should benefit from an easy, enterprise-grade and collaborative cloud AI and data platform and should be able to make that transition as fast and automatic as possible.
Speaker: Jay Allardyce, Deepak Vittal, Terrence Sheflin, and Mahyar Ghasemali
As we look ahead to 2025, business intelligence and data analytics are set to play pivotal roles in shaping success. Understanding these trends is not only essential to staying ahead of the curve, but critical for those striving to remain competitive and innovative in an increasingly data-driven world.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content