This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Were explaining the end-to-end systems the Facebook app leverages to deliver relevant content to people. At Facebooks scale, the systems built to support and overcome these challenges require extensive trade-off analyses, focused optimizations, and architecture built to allow our engineers to push for the same user and business outcomes.
Introduction Today, datasystems evolve quickly, demanding efficient monitoring and response. Real-time change detection is essential to keeping systems stable, preventing failures, and ensuring business continuity.
The Data News are here to stay, the format might vary during the year, but here we are for another year. We published videos about the Forward Data Conference, you can watch Hannes, DuckDB co-creator, keynote about Changing Large Tables. HNY 2025 ( credits ) Happy new year ✨ I wish you the best for 2025. Not really digest.
Key Takeaways: Centralized visibility of data is key. Modern IT environments require comprehensive data for successful AIOps, that includes incorporating data from legacy systems like IBM i and IBM Z into ITOps platforms. Tool overload can lead to inefficiencies and data silos. Legacy systems operate in isolation.
In Airflow, DAGs (your data pipelines) support nearly every use case. As these workflows grow in complexity and scale, efficiently identifying and resolving issues becomes a critical skill for every data engineer. This is a comprehensive guide with best practices and examples to debugging Airflow DAGs.
Data lineage is an instrumental part of Metas Privacy Aware Infrastructure (PAI) initiative, a suite of technologies that efficiently protect user privacy. It is a critical and powerful tool for scalable discovery of relevant data and data flows, which supports privacy controls across Metas systems.
In this post, we delve into predictions for 2025, focusing on the transformative role of AI agents, workforce dynamics, and data platforms. Investment in an Agent Management System (AMS) is crucial, as it offers a framework for scaling, monitoring, and refining AI agents.
Does the LLM capture all the relevant data and context required for it to deliver useful insights? Not to mention the crazy stories about Gen AI making up answers without the data to back it up!) Are we allowed to use all the data, or are there copyright or privacy concerns? But simply moving the data wasnt enough.
Understand source data] Know what you have to work with 2.3. Model your data] Define data models for historical analytics 2.4. Pipeline design] Design data pipelines to populate your data models 2.5. Data quality] Ensure you quality check your data before usage 2.
Speaker: Anindo Banerjea, CTO at Civio & Tony Karrer, CTO at Aggregage
This can be especially difficult when working with a large data corpus, and as the complexity of the task increases. The number of use cases/corner cases that the system is expected to handle essentially explodes. When developing a Gen AI application, one of the most significant challenges is improving accuracy.
Its how you integrate AI with your first-party data to deliver new business value that sets you apart. And its not sufficient to simply build these data + AI applications – as in any other technological discipline, you have to do it reliably, too. So, what does it mean to achieve trusted data + AI?
Because they can preserve the visual layout of documents and are compatible with a wide range of devices and operating systems, PDFs are used for everything from business forms and educational material to creative designs.
Managing and understanding large-scale data ecosystems is a significant challenge for many organizations, requiring innovative solutions to efficiently safeguard user data. Meta’s vast and diverse systems make it particularly challenging to comprehend its structure, meaning, and context at scale.
The database landscape has reached 394 ranked systems across multiple categoriesrelational, document, key-value, graph, search engine, time series, and the rapidly emerging vector databases. As AI applications multiply quickly, vector technologies have become a frontier that data engineers must explore.
However, during development – and even more so once deployed to production – best practices for operating and improving generative AI applications are less understood.
The ability to extract information from vast amounts of text has made question-answering (QA) systems essential in the modern era of AI-driven apps. RAG-based question-answering systems use large language models to generate human-like responses to user queries.
Introduction Big data is revolutionizing the healthcare industry and changing how we think about patient care. In this case, big data refers to the vast amounts of data generated by healthcare systems and patients, including electronic health records, claims data, and patient-generated data.
Were sharing how Meta built support for data logs, which provide people with additional data about how they use our products. Here we explore initial system designs we considered, an overview of the current architecture, and some important principles Meta takes into account in making data accessible and easy to understand.
Introduction Data engineering is the field of study that deals with the design, construction, deployment, and maintenance of data processing systems. The goal of this domain is to collect, store, and process data efficiently and efficiently so that it can be used to support business decisions and power data-driven applications.
Speaker: Alex Salazar, CEO & Co-Founder @ Arcade | Nate Barbettini, Founding Engineer @ Arcade | Tony Karrer, Founder & CTO @ Aggregage
There’s a lot of noise surrounding the ability of AI agents to connect to your tools, systems and data. But building an AI application into a reliable, secure workflow agent isn’t as simple as plugging in an API.
We are excited to announce the acquisition of Octopai , a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making. This dampens confidence in the data and hampers access, in turn impacting the speed to launch new AI and analytic projects.
dbt is the standard for creating governed, trustworthy datasets on top of your structured data. We expect that over the coming years, structured data is going to become heavily integrated into AI workflows and that dbt will play a key role in building and provisioning this data. What is MCP? Why does this matter?
A data engineering architecture is the structural framework that determines how data flows through an organization – from collection and storage to processing and analysis. It’s the big blueprint we data engineers follow in order to transform raw data into valuable insights. How Does Uber Know Where to Go?
Many of our customers — from Marriott to AT&T — start their journey with the Snowflake AI Data Cloud by migrating their data warehousing workloads to the platform. Today we’re focusing on customers who migrated from a cloud data warehouse to Snowflake and some of the benefits they saw. million in cost savings annually.
Think your customers will pay more for data visualizations in your application? Five years ago they may have. But today, dashboards and visualizations have become table stakes. Discover which features will differentiate your application and maximize the ROI of your embedded analytics. Brought to you by Logi Analytics.
Key Takeaways: Data mesh is a decentralized approach to data management, designed to shift creation and ownership of data products to domain-specific teams. Data fabric is a unified approach to data management, creating a consistent way to manage, access, and share data across distributed environments.
Three Zero-Cost Solutions That Take Hours, NotMonths A data quality certified pipeline. Source: unsplash.com In my career, data quality initiatives have usually meant big changes. Whats more, fixing the data quality issues this way often leads to new problems. Create a custom dashboard for your specific data qualityproblem.
Summary A data lakehouse is intended to combine the benefits of data lakes (cost effective, scalable storage and compute) and data warehouses (user friendly SQL interface). Data lakes are notoriously complex. Join in with the event for the global data community, Data Council Austin.
Introduction Data replication is also known as database replication, which is copying data to ensure that all information remains consistent across all data resources in real-time. data replication is like a safety net that keeps your information safe from disappearing or falling through the cracks.
Adding high-quality entity resolution capabilities to enterprise applications, services, data fabrics or data pipelines can be daunting and expensive. This will help you decide whether to build an in-house entity resolution system or utilize an existing solution like the Senzing® API for entity resolution.
The Race For Data Quality In A Medallion Architecture The Medallion architecture pattern is gaining traction among data teams. It is a layered approach to managing and transforming data. By systematically moving data through these layers, the Medallion architecture enhances the data structure in a data lakehouse environment.
Building efficient data pipelines with DuckDB 4.1. Use DuckDB to process data, not for multiple users to access data 4.2. Cost calculation: DuckDB + Ephemeral VMs = dirt cheap data processing 4.3. Processing data less than 100GB? Introduction 2. Project demo 3. Use DuckDB 4.4.
Get started → Editor’s Note: OpenXData Conference - 2025 - A Free Virtual Event A free virtual event on open data architectures - Iceberg, Hudi, lakehouses, query engines, and more. Talks from Netflix, dbt Labs, Databricks, Microsoft, Google, Meta, Peloton, and other open data geeks. May 21st, 9 am—3 pm PDT.
Summary Datasystems are inherently complex and often require integration of multiple technologies. This offers a single location for managing visibility and error handling so that data platform engineers can manage complexity. With Materialize, you can!
Managing and utilizing data effectively is crucial for organizational success in today's fast-paced technological landscape. The vast amounts of data generated daily require advanced tools for efficient management and analysis. Enter agentic AI, a type of artificial intelligence set to transform enterprise data management.
Together with a dozen experts and leaders at Snowflake, I have done exactly that, and today we debut the result: the “ Snowflake Data + AI Predictions 2024 ” report. When you’re running a large language model, you need observability into how the model may change as it ingests new data. The next evolution in data is making it AI ready.
We often use different terms when were talking about the same thing in this case, data appending vs. data enrichment. Ive noticed that “data appending” is more commonly used in industries like marketing and telecommunications, while data enrichment seems to be the preferred term in financial services and retail.
Key Takeaways : The significance of using legacy systems like mainframes in modern AI. How mainframe data helps reduce bias in AI models. The challenges and solutions involved in integrating legacy data with modern AI systems. This is where mainframe data can make a transformative impact.
Astasia Myers: The three components of the unstructured data stack LLMs and vector databases significantly improved the ability to process and understand unstructured data. The blog is an excellent summary of the existing unstructured data landscape. 60+ speakers from LinkedIn, Shopify, Amazon, Lyft, Grammarly, Mistral, et al.
Liang Mou; Staff Software Engineer, Logging Platform | Elizabeth (Vi) Nguyen; Software Engineer I, Logging Platform | In today’s data-driven world, businesses need to process and analyze data in real-time to make informed decisions. What is Change Data Capture? These changes can include inserts, updates, and deletes.
I n this episode of Unapologetically Technical, I interview Shane Murray, Field CTO at Monte Carlo Data. Shane shares his compelling journey from studying math and finance in Sydney, Australia, to leading AI strategy at a major data observability company in New York.
Editor’s Note: Launching Data & Gen-AI courses in 2025 I can’t believe DEW will reach almost its 200th edition soon. What I started as a fun hobby has become one of the top-rated newsletters in the data engineering industry. We are planning many exciting product lines to trial and launch in 2025.
Data storage has been evolving, from databases to data warehouses and expansive data lakes, with each architecture responding to different business and data needs. Traditional databases excelled at structured data and transactional workloads but struggled with performance at scale as data volumes grew.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content