Remove Database-centric Remove Pipeline-centric Remove Unstructured Data
article thumbnail

The Rise of Unstructured Data

Cloudera

Here we mostly focus on structured vs unstructured data. In terms of representation, data can be broadly classified into two types: structured and unstructured. Structured data can be defined as data that can be stored in relational databases, and unstructured data as everything else.

article thumbnail

A Comprehensive Overview of Microsoft Fabric & Its Use Cases

RandomTrees

Data Factory, Data Activator, Power BI, Synapse Real-Time Analytics, Synapse Data Engineering, Synapse Data Science, and Synapse Data Warehouse are some of them. With One Lake serving as a primary multi-cloud repository, Fabric is designed with an open, lake-centric architecture.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data Engineering Weekly #161

Data Engineering Weekly

Here is the agenda, 1) Data Application Lifecycle Management - Harish Kumar( Paypal) Hear from the team in PayPal on how they build the data product lifecycle management (DPLM) systems. 3) DataOPS at AstraZeneca The AstraZeneca team talks about data ops best practices internally established and what worked and what didn’t work!!!

article thumbnail

?Data Engineer vs Machine Learning Engineer: What to Choose?

Knowledge Hut

Factors Data Engineer Machine Learning Definition Data engineers create, maintain, and optimize data infrastructure for data. In addition, they are responsible for developing pipelines that turn raw data into formats that data consumers can use easily. Assess the needs and goals of the business.

article thumbnail

Experts Share the 5 Pillars Transforming Data & AI in 2024

Monte Carlo

Gen AI can whip up serviceable code in moments — making it much faster to build and test data pipelines. Today’s LLMs can already process enormous amounts of unstructured data, automating much of the monotonous work of data science. That implies working with new patterns like vector databases.”

article thumbnail

Data Lineage Tools: Key Capabilities and 5 Notable Solutions

Databand.ai

Learn more in our detailed guide to data lineage visualization (coming soon) Integration with Multiple Data Sources Data lineage tools are designed to integrate with a wide range of data sources, including databases, data warehouses, and cloud-based data platforms.

article thumbnail

Azure Synapse vs Databricks: 2023 Comparison Guide

Knowledge Hut

It offers a wide range of services, including computing, storage, databases, machine learning, and analytics, making it a versatile choice for businesses looking to harness the power of the cloud. This cloud-centric approach ensures scalability, flexibility, and cost-efficiency for your data workloads.