This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The third part in a series on leveraging techniques to take a look inside the black box of AI, this guide considers methods that try to explain each prediction instead of establishing a global explanation.
Every day around the world, millions of trips take place across the Uber network, giving users more reliable transportation through ridesharing, bikes, and scooters, drivers and truckers additional opportunities to earn, employees and employers more convenient business travel, and hungry … The post Uber Infrastructure in 2019: Improving Reliability, Driving Customer Satisfaction appeared first on Uber Engineering Blog.
The amount of time it takes for a message to move through a system plays a big role in the performance of distributed systems like Apache Kafka®. In Kafka, the […].
Summary Building clean datasets with reliable and reproducible ingestion pipelines is completely useless if it’s not possible to find them and understand their provenance. The solution to discoverability and tracking of data lineage is to incorporate a metadata repository into your data platform. The metadata repository serves as a data catalog and a means of reporting on the health and status of your datasets when it is properly integrated into the rest of your tools.
Apache Airflow® 3.0, the most anticipated Airflow release yet, officially launched this April. As the de facto standard for data orchestration, Airflow is trusted by over 77,000 organizations to power everything from advanced analytics to production AI and MLOps. With the 3.0 release, the top-requested features from the community were delivered, including a revamped UI for easier navigation, stronger security, and greater flexibility to run tasks anywhere at any time.
Ready to try to get hired as a data scientist for the first time? Avoiding these common mistakes won’t guarantee an offer, but not avoiding them is a sure fire way for your application to be tossed into the trash bin.
Uber’s busy 2019 included our billionth delivery of an Uber Eats order, 24 million miles covered by bike and scooter riders on our platform, and trips to top destinations such as the Empire State Building, the Eiffel Tower, and the … The post Uber’s Data Platform in 2019: Transforming Information to Intelligence appeared first on Uber Engineering Blog.
With Confluent Platform 5.3, we are actively embracing the rising DevOps movement by introducing CP-Ansible, our very own open source Ansible playbooks for deployment of Apache Kafka® and the Confluent […].
With Confluent Platform 5.3, we are actively embracing the rising DevOps movement by introducing CP-Ansible, our very own open source Ansible playbooks for deployment of Apache Kafka® and the Confluent […].
Andreas Andreakis , Ioannis Papapanagiotou Overview Change-Data-Capture (CDC) allows capturing committed changes from a database in real-time and propagating those changes to downstream consumers [1][2]. CDC is becoming increasingly popular for use cases that require keeping multiple heterogeneous datastores in sync (like MySQL and ElasticSearch) and addresses challenges that exist with traditional techniques like dual-writes and distributed transactions [3][4].
Marketing scientist Kevin Gray asks Dr. Anna Farzindar of the University of Southern California about Automatic Text Summarization and the various ways it is used.
Today, Stacey Ustian is a data engineer. But the path that led her here wasn’t always easy, and there were a few bumps and twists along the way. Her journey to data science started in a rather unusual place: the law library. After earning her Master’s degree in Library and Information Science, Stacey had taken a job working in the library of a law firm.
On behalf of the Apache Kafka® community, it is my pleasure to announce the release of Apache Kafka 2.4.0. This release includes a number of key new features and improvements […].
Speaker: Alex Salazar, CEO & Co-Founder @ Arcade | Nate Barbettini, Founding Engineer @ Arcade | Tony Karrer, Founder & CTO @ Aggregage
There’s a lot of noise surrounding the ability of AI agents to connect to your tools, systems and data. But building an AI application into a reliable, secure workflow agent isn’t as simple as plugging in an API. As an engineering leader, it can be challenging to make sense of this evolving landscape, but agent tooling provides such high value that it’s critical we figure out how to move forward.
Andreas Andreakis , Ioannis Papapanagiotou Overview Change-Data-Capture (CDC) allows capturing committed changes from a database in real-time and propagating those changes to downstream consumers [1][2]. CDC is becoming increasingly popular for use cases that require keeping multiple heterogeneous datastores in sync (like MySQL and ElasticSearch) and addresses challenges that exist with traditional techniques like dual-writes and distributed transactions [3][4].
Over the years new alternative providers have risen to provided a solitary data science environment hosted on the cloud for data scientist to analyze, host and share their work.
As a test class that allows you to test Kafka Streams logic, TopologyTestDriver is a lot faster than utilizing EmbeddedSingleNodeKafkaCluster and makes it possible to simulate different timing scenarios. Not […].
Speaker: Andrew Skoog, Founder of MachinistX & President of Hexis Representatives
Manufacturing is evolving, and the right technology can empower—not replace—your workforce. Smart automation and AI-driven software are revolutionizing decision-making, optimizing processes, and improving efficiency. But how do you implement these tools with confidence and ensure they complement human expertise rather than override it? Join industry expert Andrew Skoog as he explores how manufacturers can leverage automation to enhance operations, streamline workflows, and make smarter, data-dri
Enterprises either have no data strategy at all or an over-complicated one that under delivers. Find out how to create an effective data strategy by striking balance.
With Airflow being the open-source standard for workflow orchestration, knowing how to write Airflow DAGs has become an essential skill for every data engineer. This eBook provides a comprehensive overview of DAG writing features with plenty of example code. You’ll learn how to: Understand the building blocks DAGs, combine them in complex pipelines, and schedule your DAG to run exactly when you want it to Write DAGs that adapt to your data at runtime and set up alerts and notifications Scale you
Google has started offering a new service for “explainable AI” or XAI, as it is fashionably called. Presently offered tools are modest, but the intent is in the right direction.
Once you have deployed your machine learning model into production, differences in real-world data will result in model drift. So, retraining and redeploying will likely be required. In other words, deployment should be treated as a continuous process. This guide defines model drift and how to identify it, and includes approaches to enable model training.
In this new webinar, Tamara Fingerlin, Developer Advocate, will walk you through many Airflow best practices and advanced features that can help you make your pipelines more manageable, adaptive, and robust. She'll focus on how to write best-in-class Airflow DAGs using the latest Airflow features like dynamic task mapping and data-driven scheduling!
This post is about working with a mixture of color and grayscale images and needing to transform them into a uniform format - all grayscale. We'll be working in Python using the Pillow, Numpy, and Matplotlib packages.
Here are six more lessons based on real life examples that I think we should all remember as people working in machine learning, whether you’re a researcher, engineer, or a decision-maker.
Speaker: Ben Epstein, Stealth Founder & CTO | Tony Karrer, Founder & CTO, Aggregage
When tasked with building a fundamentally new product line with deeper insights than previously achievable for a high-value client, Ben Epstein and his team faced a significant challenge: how to harness LLMs to produce consistent, high-accuracy outputs at scale. In this new session, Ben will share how he and his team engineered a system (based on proven software engineering approaches) that employs reproducible test variations (via temperature 0 and fixed seeds), and enables non-LLM evaluation m
This third part in a series about how to "ultralearn" data science will guide you through how to optimize your learning through five valuable techniques.
This second part in a series about how to "ultralearn" data science will guide you through several techniques to remove those distractions -- because your focus needs more focus.
Ontotext Platform 3.0 features significant technology improvements to enable simpler and faster graph navigation, including GraphQL interfaces to make it easier for application developers to access knowledge graphs without tedious development of back-end APIs or complex SPARQL.
Many software teams have migrated their testing and production workloads to the cloud, yet development environments often remain tied to outdated local setups, limiting efficiency and growth. This is where Coder comes in. In our 101 Coder webinar, you’ll explore how cloud-based development environments can unlock new levels of productivity. Discover how to transition from local setups to a secure, cloud-powered ecosystem with ease.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content