This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
While Pandas is the library for data processing in Python, it isn't really built for speed. Learn more about the new library, Modin, developed to distribute Pandas' computation to speedup your data prep.
Summary The practice of data management is one that requires technical acumen, but there are also many policy and regulatory issues that inform and influence the design of our systems. With the introduction of legal frameworks such as the EU GDPR and California’s CCPA it is necessary to consider how to implement data protectino and data privacy principles in the technical and policy controls that govern our data platforms.
An integrated data foundation allows data science models to be more accurate, actionable and engage more customers. Find out how your model can positively impact your bottom line.
Introduction to Workforce Analytics Today, the need to understand what attracts skillful individuals to join an organization, stay motivated, and deliver outstanding results has become more important than ever. However, this is not a task which can be shouldered by the HR team alone; they need the right tools to deliver optimal results. Over the years, organizations around the globe have spent billions of dollars on employee performance analysis, talent recruitment, leadership training, and deve
Apache Airflow® 3.0, the most anticipated Airflow release yet, officially launched this April. As the de facto standard for data orchestration, Airflow is trusted by over 77,000 organizations to power everything from advanced analytics to production AI and MLOps. With the 3.0 release, the top-requested features from the community were delivered, including a revamped UI for easier navigation, stronger security, and greater flexibility to run tasks anywhere at any time.
A primary advantage of data analytics tools is that they can handle massive quantities of information at once. These solutions typically learn what's normal within a collection of information and how to spot anomalies.
Page Simulation for Better Offline Metrics at Netflix by David Gevorkyan , Mehmet Yilmaz , Ajinkya More , Gaurav Agrawal , Richard Wellington , Vivek Kaushal , Prasanna Padmanabhan , Justin Basilico At Netflix, we spend a lot of effort to make it easy for our members to find content they will love. To make this happen, we personalize many aspects of our service, including which movies and TV shows we present on each member’s homepage.
The controversy surrounding Apple’s credit lending decisioning for their new payment card, underwritten by Goldman Sachs, speaks volumes about our future with AI.
9
9
Sign up to get articles personalized to your interests!
Data Engineering Digest brings together the best content for data engineering professionals from the widest variety of industry thought leaders.
The controversy surrounding Apple’s credit lending decisioning for their new payment card, underwritten by Goldman Sachs, speaks volumes about our future with AI.
While the revolution of deep learning now impacts our daily lives, these networks are expensive. Approaches in transfer learning promise to ease this burden by enabling the re-use of trained models -- and this hands-on tutorial will walk you through a transfer learning technique you can run on your laptop.
With so many Data Scientists showing up on LinkedIn, it's time to make sure your profile is top-notch because your talent is still highly sought after. Recruitment specialists want to find you fast, and this guide will help you create the best profile to feature your expertise.
Speaker: Alex Salazar, CEO & Co-Founder @ Arcade | Nate Barbettini, Founding Engineer @ Arcade | Tony Karrer, Founder & CTO @ Aggregage
There’s a lot of noise surrounding the ability of AI agents to connect to your tools, systems and data. But building an AI application into a reliable, secure workflow agent isn’t as simple as plugging in an API. As an engineering leader, it can be challenging to make sense of this evolving landscape, but agent tooling provides such high value that it’s critical we figure out how to move forward.
The following article is an introduction to classification and regression — which are known as supervised learning — and unsupervised learning — which in the context of machine learning applications often refers to clustering — and will include a walkthrough in the popular python library scikit-learn.
Producing accessible data visualizations is a key data science skill. The following guidelines will help you create the best representations of your data using R and Python's Pandas library.
This article provides covers how to automatically identify the topics within a corpus of textual data by using unsupervised topic modelling, and then apply a supervised classification algorithm to assign topic labels to each textual document by using the result of the previous step as target labels.
Speaker: Andrew Skoog, Founder of MachinistX & President of Hexis Representatives
Manufacturing is evolving, and the right technology can empower—not replace—your workforce. Smart automation and AI-driven software are revolutionizing decision-making, optimizing processes, and improving efficiency. But how do you implement these tools with confidence and ensure they complement human expertise rather than override it? Join industry expert Andrew Skoog as he explores how manufacturers can leverage automation to enhance operations, streamline workflows, and make smarter, data-dri
With artificial intelligence and machine learning now a mainstay of our daily awareness, news organizations have been seen to overstate the reality behind progress in the field. Learn more about recent examples of media hyperbole and explore why this may be happening.
With Airflow being the open-source standard for workflow orchestration, knowing how to write Airflow DAGs has become an essential skill for every data engineer. This eBook provides a comprehensive overview of DAG writing features with plenty of example code. You’ll learn how to: Understand the building blocks DAGs, combine them in complex pipelines, and schedule your DAG to run exactly when you want it to Write DAGs that adapt to your data at runtime and set up alerts and notifications Scale you
Whether you’re a beginner or an expert, there’s always new ways you can improve your Python coding. Save 40% off this trio of Manning Python books today! Just enter the code nlpropython40 at checkout when you buy from manning.com.
During this free Metis Corporate Training webinar, Dec 5 @ 12pm ET, Kerstin Frailey, Senior Data Scientist and Head of Executive Corporate Training at Metis, will walk through what you need to ask before, during, and after the lifetime of a data science project to accurately assess its impact on the business.
In this new webinar, Tamara Fingerlin, Developer Advocate, will walk you through many Airflow best practices and advanced features that can help you make your pipelines more manageable, adaptive, and robust. She'll focus on how to write best-in-class Airflow DAGs using the latest Airflow features like dynamic task mapping and data-driven scheduling!
On KDnuggets this week: Orchestrating Dynamic Reports in Python and R with Rmd Files; How to Create a Vocabulary for NLP Tasks in Python; What is Data Science?; The Complete Data Science LinkedIn Profile Guide; Set Operations Applied to Pandas DataFrames; and much, much more.
Also: Understanding Boxplots; Probability Learning: Maximum Likelihood; Designing Your Neural Networks; Facebook Has Been Quietly Open Sourcing Some Amazing Deep Learning Capabilities for PyTorch; 5 Statistical Traps Data Scientists Should Avoid.
Also: It's time to make your Data Science LinkedIn profile ready for recruiters.; Python Libraries for Interpretable Machine Learning - KDnuggets; Process your data with Pandas up to 4x faster with this new Python library.; How to Extract Google Maps Coordinates.
This live webinar, Nov 14 @ 12pm EST, on MLOps for production-level machine learning, will detail MLOps, a compound of “machine learning” and “operations”, a practice for collaboration and communication between data scientists and operations professionals to help manage the production machine learning lifecycle. Register now.
Speaker: Ben Epstein, Stealth Founder & CTO | Tony Karrer, Founder & CTO, Aggregage
When tasked with building a fundamentally new product line with deeper insights than previously achievable for a high-value client, Ben Epstein and his team faced a significant challenge: how to harness LLMs to produce consistent, high-accuracy outputs at scale. In this new session, Ben will share how he and his team engineered a system (based on proven software engineering approaches) that employs reproducible test variations (via temperature 0 and fixed seeds), and enables non-LLM evaluation m
Page Simulation for Better Offline Metrics at Netflix by David Gevorkyan , Mehmet Yilmaz , Ajinkya More , Gaurav Agrawal , Richard Wellington , Vivek Kaushal , Prasanna Padmanabhan , Justin Basilico At Netflix, we spend a lot of effort to make it easy for our members to find content they will love. To make this happen, we personalize many aspects of our service, including which movies and TV shows we present on each member’s homepage.
Page Simulation for Better Offline Metrics at Netflix by David Gevorkyan , Mehmet Yilmaz , Ajinkya More , Gaurav Agrawal , Richard Wellington , Vivek Kaushal , Prasanna Padmanabhan , Justin Basilico At Netflix, we spend a lot of effort to make it easy for our members to find content they will love. To make this happen, we personalize many aspects of our service, including which movies and TV shows we present on each member’s homepage.
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content