This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Deep Learning is/has become the hottest skill in Data Science at the moment. There is a plethora of articles, courses, technologies, influencers and resources that we can leverage to gain the Deep Learning skills.
In 2011, Marc Andressen wrote an article called Why Software is Eating the World. The central idea is that any process that can be moved into software, will be. This has become a kind of shorthand for the investment thesis behind Silicon Valley’s current wave of unicorn startups. It’s also a unifying idea behind the larger set of technology trends we see today, such as machine learning, IoT, ubiquitous mobile connectivity, SaaS, and cloud computing.
Summary Object storage is quickly becoming the unifying layer for data intensive applications and analytics. Modern, cloud oriented data warehouses and data lakes both rely on the durability and ease of use that it provides. S3 from Amazon has quickly become the de-facto API for interacting with this service, so the team at MinIO have built a production grade, easy to manage storage engine that replicates that interface.
Niosha Behnam | Demand Engineering @ Netflix At Netflix we prioritize innovation and velocity in pursuit of the best experience for our 150+ million global customers. This means that our microservices constantly evolve and change, but what doesn’t change is our responsibility to provide a highly available service that delivers 100+ million hours of daily streaming to our subscribers.
In Airflow, DAGs (your data pipelines) support nearly every use case. As these workflows grow in complexity and scale, efficiently identifying and resolving issues becomes a critical skill for every data engineer. This is a comprehensive guide with best practices and examples to debugging Airflow DAGs. You’ll learn how to: Create a standardized process for debugging to quickly diagnose errors in your DAGs Identify common issues with DAGs, tasks, and connections Distinguish between Airflow-relate
Our list of deep learning researchers and industry leaders are the people you should follow to stay current with this wildly expanding field in AI. From early practitioners and established academics to entrepreneurs and today’s top corporate influencers, this diverse group of individuals is leading the way into tomorrow’s deep learning landscape.
In the early days, many companies simply used Apache Kafka ® for data ingestion into Hadoop or another data lake. However, Apache Kafka is more than just messaging. The significant difference today is that companies use Apache Kafka as an event streaming platform for building mission-critical infrastructures and core operations platforms. Examples include microservice architectures, mainframe integration, instant payment, fraud detection, sensor analytics, real-time monitoring, and many more—dri
Time series data is found everywhere from stock prices to public health. Vantage's Machine Learning Engine helps turn that data into answers. Find out how.
Time series data is found everywhere from stock prices to public health. Vantage's Machine Learning Engine helps turn that data into answers. Find out how.
Scaling a Mature Data Pipeline — Managing Overhead There is often a hidden performance cost tied to the complexity of data pipelines — the overhead. In this post, we will introduce its concept, and examine the techniques we use to avoid it in our data pipelines. Author : Zachary Ennenga The view from the third floor at Airbnb HQ! Background There is often a natural evolution in the tooling, organization, and technical underpinning of data pipelines.
We show, step-by-step, how to construct a single, generalized, utility function to pull images automatically from a directory and train a convolutional neural net model.
Kafka Summit San Francisco is just one week away. Conferences can be busy affairs, so here are some tips on getting the most out of your time there. Plan. Go and check out the schedule. Spend a bit of time familiarising yourself with what sessions you want to get to, and mark them on your calendar. How do you pick which sessions to attend? My advice: diversify!
Apache Airflow® 3.0, the most anticipated Airflow release yet, officially launched this April. As the de facto standard for data orchestration, Airflow is trusted by over 77,000 organizations to power everything from advanced analytics to production AI and MLOps. With the 3.0 release, the top-requested features from the community were delivered, including a revamped UI for easier navigation, stronger security, and greater flexibility to run tasks anywhere at any time.
How can you keep your machine learning models and data organized so you can collaborate effectively? Discover this new tool set available for better version control designed for the data scientist workflow.
This article provides a brief introduction to working with natural language (sometimes called “text analytics”) in Python using spaCy and related libraries.
Speaker: Alex Salazar, CEO & Co-Founder @ Arcade | Nate Barbettini, Founding Engineer @ Arcade | Tony Karrer, Founder & CTO @ Aggregage
There’s a lot of noise surrounding the ability of AI agents to connect to your tools, systems and data. But building an AI application into a reliable, secure workflow agent isn’t as simple as plugging in an API. As an engineering leader, it can be challenging to make sense of this evolving landscape, but agent tooling provides such high value that it’s critical we figure out how to move forward.
Learn about the the current and future issues of data science and possible solutions from this interview with IADSS Co-founder, Dr. Usama Fayyad following his keynote speech at ODSC Boston 2019.
As a data scientist, you can get lost in your daily dives into the data. Consider this advice to be certain to follow in your work for being diligent and more impactful for your organization.
Join the Crunch Data Conference in Budapest, Oct 16-18, with stellar speakers from companies like Facebook, Netflix and LinkedIn. Use the discount code ‘KDNuggets’ to save $100 off your conference ticket.
Speaker: Andrew Skoog, Founder of MachinistX & President of Hexis Representatives
Manufacturing is evolving, and the right technology can empower—not replace—your workforce. Smart automation and AI-driven software are revolutionizing decision-making, optimizing processes, and improving efficiency. But how do you implement these tools with confidence and ensure they complement human expertise rather than override it? Join industry expert Andrew Skoog as he explores how manufacturers can leverage automation to enhance operations, streamline workflows, and make smarter, data-dri
This article shows you how to separate your customers into distinct groups based on their purchase behavior. For the R enthusiasts out there, I demonstrated what you can do with r/stats, ggradar, ggplot2, animation, and factoextra.
Take me out to the ballgame! Take me out to the crowd! For the 2,829 seasons that have been played for 101 baseball teams since 1880, which seasons were unlike any others? Using SAX Encoding to recognize patterns in time series data, the most special years in baseball can be found.
With Airflow being the open-source standard for workflow orchestration, knowing how to write Airflow DAGs has become an essential skill for every data engineer. This eBook provides a comprehensive overview of DAG writing features with plenty of example code. You’ll learn how to: Understand the building blocks DAGs, combine them in complex pipelines, and schedule your DAG to run exactly when you want it to Write DAGs that adapt to your data at runtime and set up alerts and notifications Scale you
This live webinar, Oct 2 2019, will instruct data scientists and machine learning engineers how to build manage and deploy auto-adaptive machine learning models in production. Save your spot now.
Today, as companies have finally come to understand the value that data science can bring, more and more emphasis is being placed on the implementation of data science in production systems. And as these implementations have required models that can perform on larger and larger datasets in real-time, an awful lot of data science problems have become engineering problems.
Penn State’s fully online data analytics program uniquely prepares students to advance their career in data science. Penn State offers 3 intakes every year and reviews applications on a rolling basis. GMAT or GRE waivers are available to highly qualified candidates. Learn more now.
Register now for this webinar, Sep 25 @ 12 PM ET, for a clear approach on how to apply machine learning language technology to massive, unstructured data sets in order to create predictive models of what may be the next “it” ingredient, color, flavor or pack size.
In this new webinar, Tamara Fingerlin, Developer Advocate, will walk you through many Airflow best practices and advanced features that can help you make your pipelines more manageable, adaptive, and robust. She'll focus on how to write best-in-class Airflow DAGs using the latest Airflow features like dynamic task mapping and data-driven scheduling!
Also: Explore the world of Bioinformatics with Machine Learning; My journey path from a Software Engineer to BI Specialist to a Data Scientist; 5 Beginner Friendly Steps to Learn Machine Learning and Data Science with Python; 10 Great Python Resources for Aspiring Data Scientists.
Robust data governance support through Schema Validation on write is now supported in Confluent Platform 5.4-preview. This gives operators a centralized location to enforce data format correctness within Confluent Platform. Enforcing data correctness on write is the first step towards enabling centralized policy enforcement and data governance within your event streaming platform.
Of all data quality characteristics, we consider consistency and accuracy to be the most difficult ones to measure. Here, we describe the challenges that you may encounter and the ways to overcome them.
AI World Conference & Expo has become the industry’s largest independent business event focused on the state of the practice of AI in the enterprise. Join us in Boston, Oct 23-25. Use the discount code 1968-KDN and SAVE $200.
Speaker: Ben Epstein, Stealth Founder & CTO | Tony Karrer, Founder & CTO, Aggregage
When tasked with building a fundamentally new product line with deeper insights than previously achievable for a high-value client, Ben Epstein and his team faced a significant challenge: how to harness LLMs to produce consistent, high-accuracy outputs at scale. In this new session, Ben will share how he and his team engineered a system (based on proven software engineering approaches) that employs reproducible test variations (via temperature 0 and fixed seeds), and enables non-LLM evaluation m
We organize all of the trending information in your field so you don't have to. Join 37,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content