Remove Hadoop Remove Kafka Remove Relational Database
article thumbnail

Hadoop vs Spark: Main Big Data Tools Explained

AltexSoft

Hadoop and Spark are the two most popular platforms for Big Data processing. To come to the right decision, we need to divide this big question into several smaller ones — namely: What is Hadoop? To come to the right decision, we need to divide this big question into several smaller ones — namely: What is Hadoop? scalability.

article thumbnail

How to Design a Modern, Robust Data Ingestion Architecture

Monte Carlo

Batch Processing Tools For batch processing, tools like Apache Hadoop and Spark are widely used. Hadoop handles large-scale data storage and processing, while Spark offers fast in-memory computing capabilities for further processing. Data Extraction: Apache Kafka and Apache Flume handled real-time streaming data.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Good and the Bad of Hadoop Big Data Framework

AltexSoft

Depending on how you measure it, the answer will be 11 million newspaper pages or… just one Hadoop cluster and one tech specialist who can move 4 terabytes of textual data to a new location in 24 hours. The Hadoop toy. So the first secret to Hadoop’s success seems clear — it’s cute. What is Hadoop?

Hadoop 59
article thumbnail

Big Data Technologies that Everyone Should Know in 2024

Knowledge Hut

If you pursue the MSc big data technologies course, you will be able to specialize in topics such as Big Data Analytics, Business Analytics, Machine Learning, Hadoop and Spark technologies, Cloud Systems etc. There are a variety of big data processing technologies available, including Apache Hadoop, Apache Spark, and MongoDB.

article thumbnail

Kafka Connect Deep Dive – JDBC Source Connector

Confluent

One of the most common integrations that people want to do with Apache Kafka ® is getting data in from a database. That is because relational databases are a rich source of events. The existing data in a database, and any changes to that data, can be streamed into a Kafka topic. What we’ll cover.

Kafka 90
article thumbnail

Stateful, Distributed Stream Processing on Flink with Fabian Hueske - Episode 57

Data Engineering Podcast

How does Flink compare to other streaming engines such as Spark, Kafka, Pulsar, and Storm? How does Flink compare to other streaming engines such as Spark, Kafka, Pulsar, and Storm? Can you start by describing what Flink is and how the project got started? What are some of the primary ways that Flink is used? How is Flink architected?

Process 100
article thumbnail

Top 20+ Big Data Certifications and Courses in 2023

Knowledge Hut

Big Data Frameworks : Familiarity with popular Big Data frameworks such as Hadoop, Apache Spark, Apache Flink, or Kafka are the tools used for data processing. Database Management : knowing how to work with databases - both relational(like Postgres) and non-relational - is important for efficient storing and retrieval of data.